目录
函数名:
torchvision.transforms.ColorJitter(brightness=0, contrast=0, saturation=0, hue=0)
函数解析:
随机改变一个图像的亮度、对比度、饱和度和色调。如果图像是 tensor,那么它的 shape 为[…,1或3,H,W],其中…表示 batch。如果图像是PIL图像,那么不支持模式 “1”、“I”、"F "和带有透明度(alpha通道)的模式。
参数:
brightness (类型为 float 或 tuple: float (min, max)) - 亮度的偏移程度。 brightness_factor可以是 [max(0, 1 - brightness), 1 + brightness],也可以直接给出最大、最小值的范围 [min, max],然后从中随机采样。brightness_factor 值应该是非负数。
contrast (类型为 float 或 tuple: float (min, max)) - 对比度的偏移程度。 contrast_factor 可以是 [max(0, 1 - contrast), 1 + contrast],也可以直接给出最大、最小值的范围 [min, max],然后从中随机采样。contrast_factor 值应该是非负数。
saturation (类型为 float 或 tuple: float (min, max)) - 饱和度的偏移程度。 saturation_factor 可以是 [max(0, 1 - saturation), 1 + saturation],也可以直接给出最大、最小值的范围 [min, max],然后从中随机采样。saturation_factor 值应该是非负数。
hue (类型为 float 或 tuple: float (min, max)) - 色调的偏移程度。hue_factor 可以是 [-hue, hue],也可以直接给出最大、最小值的范围 [min, max],然后从中随机采样,它的值应当满足 0<= hue <= 0.5 或者 -0.5<= min <= max <= 0.5。为了使色调偏移,输入图像的像素值必须是非负值,以便转换到 HSV 颜色空间。因此,如果将图像归一化到一个有负值的区间,或者在使用这个函数之前使用会产生负值的插值方法,那么它就不会起作用。
参数是测试过的经验值
- import cv2
- import numpy as np
- import torch
- from PIL import Image
-
- from torchvision.transforms import ColorJitter
- import random
-
-
- class CustomColorJitter(ColorJitter):
- def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
- super(CustomColorJitter, self).__init__(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)
-
- def get_params(self, brightness, contrast, saturation, hue):
- self.last_brightness =None
-
- self.bright_param=None
- if brightness is not None:
- self.last_brightness = brightness[0] + random.uniform(0, 1) * (brightness[1] - brightness[0])
- self.bright_param=(self.last_brightness,self.last_brightness)
- self.contrast_param = None
- if contrast is not None:
- self.last_contrast = contrast[0] + random.uniform(0, 1) * (contrast[1] - contrast[0])
- self.contrast_param=(self.last_contrast,self.last_contrast)
- self.saturation_param = None
- if saturation is not None:
- self.last_saturation = saturation[0] + random.uniform(0, 1) * (saturation[1] - saturation[0])
- self.saturation_param=(self.last_saturation,self.last_saturation)
- self.hue_param=None
- if hue is not None:
- self.last_hue = hue[0] + random.uniform(0, 1) * (hue[1] - hue[0])
- self.hue_param=(self.last_hue,self.last_hue)
-
- return super().get_params(brightness=self.bright_param, contrast=self.contrast_param,
- saturation=self.saturation_param, hue=self.hue_param)
-
-
- img_path = "./aaa.png"
-
- debug=True
-
- if debug:
- transform = CustomColorJitter(brightness=[0.6, 1.3], contrast=[0.5, 1.5], saturation=[0.5, 1.5], hue=[-0.02, 0.02])
- # transform = CustomColorJitter(hue=[-0.02, 0.02])
- # transform = CustomColorJitter(saturation=[0.5, 1.5])
- # transform = CustomColorJitter( contrast=[0.5, 1.5])
- # transform = CustomColorJitter( brightness=[0.7, 1.3])
- else:
- transform = ColorJitter(brightness=[0.6, 1.3], contrast=[0.5, 1.5], saturation=[0.5, 1.5], hue=[-0.02, 0.02])
-
-
- while True:
- img = cv2.imread(img_path)
- pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
- image = transform(pil_img)
- if debug:
- if transform.bright_param is not None:
- print("Last brightness value:", transform.bright_param)
- if transform.contrast_param is not None:
- print("Last contrast value:", transform.contrast_param)
- if transform.saturation_param is not None:
- print("Last saturation value:", transform.saturation_param)
- if transform.hue_param is not None:
- print("Last hue value:", transform.hue_param)
-
- img_cv = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
- cv2.imshow("img_o", img)
- cv2.imshow("img_cv", img_cv)
- cv2.waitKey(0)
- import cv2
- import numpy as np
- import torch
- import torchvision.transforms as f
- from PIL import Image
-
-
- from torchvision.transforms import ColorJitter
- import random
-
- class CustomColorJitter(ColorJitter):
- def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
- super(CustomColorJitter, self).__init__(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue)
-
- def get_params(self, brightness, contrast, saturation, hue):
- self.last_brightness = brightness[0] + random.uniform(0, 1) * (brightness[1] - brightness[0])
- return super().get_params(brightness=(self.last_brightness, self.last_brightness), contrast=contrast, saturation=saturation, hue=hue)
-
- img_path = "./aaa.png"
-
- transform = CustomColorJitter(brightness=[0.5, 1.5])
-
- while True:
- img = cv2.imread(img_path)
- pil_img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
- image = transform(pil_img)
-
- print("Last brightness value:", transform.last_brightness)
-
- img_cv = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)
- cv2.imshow("img_o", img)
- cv2.imshow("img_cv", img_cv)
- cv2.waitKey(0)
以下内容转自:https://blog.csdn.net/lxhRichard/article/details/128083192
1. 以随机亮度为例
- import torch
- import torchvision.transforms as f
- from PIL import Image
-
- img_path = "./1.jpg"
- img = Image.open(img_path)
- trans = f.ColorJitter(brightness=[0.01,0.05])
- image = trans(img)
- image.show()
输出对比:

2. 以随机对比度为例
- import torch
- import torchvision.transforms as f
- from PIL import Image
-
- img_path = "./1.jpg"
- img = Image.open(img_path)
- trans = f.ColorJitter(contrast=[0.3,0.6])
- image = trans(img)
- image.show()
输出对比:

3. 以随机饱和度为例
- import torch
- import torchvision.transforms as f
- from PIL import Image
-
- img_path = "./1.jpg"
- img = Image.open(img_path)
- trans = f.ColorJitter(saturation=[0.2,0.5])
- image = trans(img)
- image.show()
输出对比:

4. 以随机色调为例
- import torch
- import torchvision.transforms as f
- from PIL import Image
-
- img_path = "./1.jpg"
- img = Image.open(img_path)
- trans = f.ColorJitter(hue=[-0.1,0.2])
- image = trans(img)
- image.show()
输出对比:

5. 综合调整:
- import torch
- import torchvision.transforms as f
- from PIL import Image
-
- img_path = "./1.jpg"
- img = Image.open(img_path)
- trans = f.ColorJitter(brightness=0.6, contrast=0.7, saturation=0.5, hue=0.1)
- image = trans(img)
- image.show()
输出对比:

官方文档链接:https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html?highlight=transforms+colorjitter#torchvision.transforms.ColorJitter
-
-
- import cv2
- import numpy as np
-
- def augment_hsv(img, h_gain=0.015, s_gain=0.7, v_gain=0.4):
- r = np.random.uniform(-1, 1, 3) * [h_gain, s_gain, v_gain] + 1 # random gains
- hue, sat, val = cv2.split(cv2.cvtColor(img, cv2.COLOR_BGR2HSV))
- print(r[0], r[1], r[2])
- dtype = img.dtype # uint8
-
- x = np.arange(0, 256, dtype=np.int16)
- lut_hue = ((x * r[0]) % 180).astype(dtype)
- lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
- lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
-
- img_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val))).astype(dtype)
- cv2.cvtColor(img_hsv, cv2.COLOR_HSV2BGR, dst=img) # no return needed
-
- if __name__ == '__main__':
-
- img_path = "./aaa.png"
- while True:
- img_o = cv2.imread(img_path)
- img=img_o.copy()
- augment_hsv(img)
- cv2.imshow("img_o", img_o)
- cv2.imshow('HSV Augmented Image', img)
- cv2.waitKey(0)