本文为8月15日TensorFlow学习笔记,分为六个章节:
[ b , s e q _ l e n , f e a t u r e _ l e n ] [ w o r d n u m , b , w o r d v e c ] [b, seq\_len, feature\_len]\\\ [word\ num, b, word\ vec] [b,seq_len,feature_len] [word num,b,word vec]
import tensorflow as tf
from tensorflow.keras import layers
x = tf.range(5)
x = tf.random.shuffle(x)
print('x: ', x)
net = layers.Embedding(10, 4)
print('net(x): ', net(x))
print('Variables: ', net.trainable_variables)
>>> x: tf.Tensor([3 1 2 4 0], shape=(5,), dtype=int32)
>>> net(x): tf.Tensor(
[[ 0.00657358 0.012666 0.01578368 0.04547732]
[ 0.03115724 -0.0150555 0.00257788 0.0059495 ]
[-0.00751901 -0.02282023 -0.02350371 -0.00176684]
[ 0.00191356 0.04653488 0.04107442 -0.03144759]
[-0.02379932 -0.02618247 -0.01534456 -0.00577461]], shape=(5, 4), dtype=float32)
>>> Variables: [<tf.Variable 'embedding/embeddings:0' shape=(10, 4) dtype=float32, numpy=
array([[-0.0133497 , -0.02664096, -0.02426125, -0.03032522],
[-0.01147861, 0.00350826, 0.01625546, -0.00250021],
[ 0.03258711, 0.02548888, 0.01436329, -0.01171582],
[-0.03033434, -0.01988299, 0.03989463, -0.02743146],
[ 0.04732693, -0.01455421, -0.00769072, 0.01441428],
[ 0.04504165, -0.01252029, -0.04699463, 0.03120432],
[ 0.01991358, -0.00563236, 0.0146648 , 0.03104378],
[ 0.00062705, 0.04419595, 0.00331502, -0.00502656],
[-0.03338401, -0.02013427, -0.00471456, 0.04988861],
[-0.04404187, -0.03447127, 0.00097726, 0.0235931 ]],
dtype=float32)>]
x t : [ b , 100 ] o u t , h 1 = c a l l ( x , h 0 ) x_t: [b, 100]\\\ out, h1 = call(x, h_0) xt:[b,100] out,h1=call(x,h0)
cell = layers.SimpleRNNCell(3)
cell.build(input_shape=(None, 4))
print('Variables: ', cell.trainable_variable)
>>> Variables: [<tf.Variable 'kernel:0' shape=(4, 3) dtype=float32, numpy=
array([[ 0.9063113 , -0.15272564, -0.37417394],
[-0.62598073, 0.11762738, 0.33107877],
[ 0.82874715, -0.24461818, 0.1809479 ],
[ 0.06814569, 0.47765958, 0.49054313]], dtype=float32)>, <tf.Variable 'recurrent_kernel:0' shape=(3, 3) dtype=float32, numpy=
array([[ 0.853045 , 0.5034819 , -0.13718656],
[-0.5190743 , 0.7916652 , -0.3222238 ],
[ 0.05362803, -0.34608147, -0.93667054]], dtype=float32)>, <tf.Variable 'bias:0' shape=(3,) dtype=float32, numpy=array([0., 0., 0.], dtype=float32)>]
x = tf.random.normal([4, 80, 100])
xt0 = x[:, 0, :]
cell = tf.keras.layers.SimpleRNNCell(64)
cell2 = tf.keras.layers.SimpleRNNCell(64)
state0 = [tf.zeros([4, 64])]
state1 = [tf.zeros([4, 64])]
out0, state0 = cell(xt0, state0)
out2, state2 = cell2(out0, state0)
print('out2_shape', out2.shape)
print('state2[0]_shape', state2[0].shape)
>>> out2_shape (4, 64)
>>> state2[0]_shape (4, 64)
self.rnn = keras.Sequential([
layers.SimpleRNN(units, dropout=0.5, return_sequences=True, unroll=True),
layers.SimpleRNN(units, dropout=0.5, unroll=True)
])
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')
batchsz = 128
# the most frequest words
total_words = 10000
max_review_len = 80
embedding_len = 100
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# x_train:[b, 80]
# x_test: [b, 80]
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)
class MyRNN(keras.Model):
def __init__(self, units):
super(MyRNN, self).__init__()
# [b, 64]
self.state0 = [tf.zeros([batchsz, units])]
self.state1 = [tf.zeros([batchsz, units])]
# transform text to embedding representation
# [b, 80] => [b, 80, 100]
self.embedding = layers.Embedding(total_words, embedding_len,
input_length=max_review_len)
# [b, 80, 100] , h_dim: 64
# RNN: cell1 ,cell2, cell3
# SimpleRNN
self.rnn_cell0 = layers.SimpleRNNCell(units, dropout=0.5)
self.rnn_cell1 = layers.SimpleRNNCell(units, dropout=0.5)
# fc, [b, 80, 100] => [b, 64] => [b, 1]
self.outlayer = layers.Dense(1)
def call(self, inputs, training=None):
"""
net(x) net(x, training=True) :train mode
net(x, training=False): test
:param inputs: [b, 80]
:param training:
:return:
"""
# [b, 80]
x = inputs
# embedding: [b, 80] => [b, 80, 100]
x = self.embedding(x)
# rnn cell compute
# [b, 80, 100] => [b, 64]
state0 = self.state0
state1 = self.state1
for word in tf.unstack(x, axis=1): # word: [b, 100]
# h1 = x*wxh+h0*whh
# out0: [b, 64]
out0, state0 = self.rnn_cell0(word, state0, training)
# out1: [b, 64]
out1, state1 = self.rnn_cell1(out0, state1, training)
# out: [b, 64] => [b, 1]
x = self.outlayer(out1)
# p(y is pos|x)
prob = tf.sigmoid(x)
return prob
def main():
units = 64
epochs = 4
model = MyRNN(units)
model.compile(optimizer = keras.optimizers.Adam(0.001),
loss = tf.losses.BinaryCrossentropy(),
metrics=['accuracy'])
model.fit(db_train, epochs=epochs, validation_data=db_test)
model.evaluate(db_test)
if __name__ == '__main__':
main()
>>> ……
Epoch 4/4
195/195 [==============================] - 8s 41ms/step - loss: 0.2468 - accuracy: 0.9028 - val_loss: 0.4614 - val_accuracy: 0.8266
195/195 [==============================] - 2s 12ms/step - loss: 0.4614 - accuracy: 0.8266
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')
batchsz = 128
# the most frequest words
total_words = 10000
max_review_len = 80
embedding_len = 100
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# x_train:[b, 80]
# x_test: [b, 80]
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)
class MyRNN(keras.Model):
def __init__(self, units):
super(MyRNN, self).__init__()
# [b, 64]
self.state0 = [tf.zeros([batchsz, units]),tf.zeros([batchsz, units])]
self.state1 = [tf.zeros([batchsz, units]),tf.zeros([batchsz, units])]
# transform text to embedding representation
# [b, 80] => [b, 80, 100]
self.embedding = layers.Embedding(total_words, embedding_len,
input_length=max_review_len)
# [b, 80, 100] , h_dim: 64
# RNN: cell1 ,cell2, cell3
# SimpleRNN
# self.rnn_cell0 = layers.SimpleRNNCell(units, dropout=0.5)
# self.rnn_cell1 = layers.SimpleRNNCell(units, dropout=0.5)
self.rnn_cell0 = layers.LSTMCell(units, dropout=0.5)
self.rnn_cell1 = layers.LSTMCell(units, dropout=0.5)
# fc, [b, 80, 100] => [b, 64] => [b, 1]
self.outlayer = layers.Dense(1)
def call(self, inputs, training=None):
"""
net(x) net(x, training=True) :train mode
net(x, training=False): test
:param inputs: [b, 80]
:param training:
:return:
"""
# [b, 80]
x = inputs
# embedding: [b, 80] => [b, 80, 100]
x = self.embedding(x)
# rnn cell compute
# [b, 80, 100] => [b, 64]
state0 = self.state0
state1 = self.state1
for word in tf.unstack(x, axis=1): # word: [b, 100]
# h1 = x*wxh+h0*whh
# out0: [b, 64]
out0, state0 = self.rnn_cell0(word, state0, training)
# out1: [b, 64]
out1, state1 = self.rnn_cell1(out0, state1, training)
# out: [b, 64] => [b, 1]
x = self.outlayer(out1)
# p(y is pos|x)
prob = tf.sigmoid(x)
return prob
def main():
units = 64
epochs = 4
import time
t0 = time.time()
model = MyRNN(units)
model.compile(optimizer = keras.optimizers.Adam(0.001),
loss = tf.losses.BinaryCrossentropy(),
metrics=['accuracy'])
model.fit(db_train, epochs=epochs, validation_data=db_test)
model.evaluate(db_test)
t1 = time.time()
# 64.3 seconds, 83.4%
print('total time cost:', t1-t0)
if __name__ == '__main__':
main()
>>> Epoch 4/4
195/195 [==============================] - 16s 84ms/step - loss: 0.2190 - accuracy: 0.9168 - val_loss: 0.4562 - val_accuracy: 0.8308
195/195 [==============================] - 4s 21ms/step - loss: 0.4562 - accuracy: 0.8308
total time cost: 81.24266004562378
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')
batchsz = 128
# the most frequest words
total_words = 10000
max_review_len = 80
embedding_len = 100
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# x_train:[b, 80]
# x_test: [b, 80]
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
db_train = db_train.shuffle(1000).batch(batchsz, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)
class MyRNN(keras.Model):
def __init__(self, units):
super(MyRNN, self).__init__()
# [b, 64]
self.state0 = [tf.zeros([batchsz, units])]
self.state1 = [tf.zeros([batchsz, units])]
# transform text to embedding representation
# [b, 80] => [b, 80, 100]
self.embedding = layers.Embedding(total_words, embedding_len,
input_length=max_review_len)
# [b, 80, 100] , h_dim: 64
# RNN: cell1 ,cell2, cell3
# SimpleRNN
# self.rnn_cell0 = layers.SimpleRNNCell(units, dropout=0.5)
# self.rnn_cell1 = layers.SimpleRNNCell(units, dropout=0.5)
self.rnn_cell0 = layers.GRUCell(units, dropout=0.5)
self.rnn_cell1 = layers.GRUCell(units, dropout=0.5)
# fc, [b, 80, 100] => [b, 64] => [b, 1]
self.outlayer = layers.Dense(1)
def call(self, inputs, training=None):
"""
net(x) net(x, training=True) :train mode
net(x, training=False): test
:param inputs: [b, 80]
:param training:
:return:
"""
# [b, 80]
x = inputs
# embedding: [b, 80] => [b, 80, 100]
x = self.embedding(x)
# rnn cell compute
# [b, 80, 100] => [b, 64]
state0 = self.state0
state1 = self.state1
for word in tf.unstack(x, axis=1): # word: [b, 100]
# h1 = x*wxh+h0*whh
# out0: [b, 64]
out0, state0 = self.rnn_cell0(word, state0, training)
# out1: [b, 64]
out1, state1 = self.rnn_cell1(out0, state1, training)
# out: [b, 64] => [b, 1]
x = self.outlayer(out1)
# p(y is pos|x)
prob = tf.sigmoid(x)
return prob
def main():
units = 64
epochs = 4
import time
t0 = time.time()
model = MyRNN(units)
model.compile(optimizer = keras.optimizers.Adam(0.001),
loss = tf.losses.BinaryCrossentropy(),
metrics=['accuracy'])
model.fit(db_train, epochs=epochs, validation_data=db_test)
model.evaluate(db_test)
t1 = time.time()
# LSTM: 64.3 seconds, 83.4%
# GRU: 96.7s, 83.4%
print('total time cost:', t1-t0)
if __name__ == '__main__':
main()
>>> Epoch 4/4
195/195 [==============================] - 18s 91ms/step - loss: 0.2386 - accuracy: 0.9074 - val_loss: 0.4181 - val_accuracy: 0.8304
195/195 [==============================] - 5s 26ms/step - loss: 0.4181 - accuracy: 0.8304
total time cost: 89.22233891487122
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import Sequential, layers
from PIL import Image
from matplotlib import pyplot as plt
tf.random.set_seed(22)
np.random.seed(22)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')
def save_images(imgs, name):
new_im = Image.new('L', (280, 280))
index = 0
for i in range(0, 280, 28):
for j in range(0, 280, 28):
im = imgs[index]
im = Image.fromarray(im, mode='L')
new_im.paste(im, (i, j))
index += 1
new_im.save(name)
h_dim = 20
batchsz = 512
lr = 1e-3
(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
x_train, x_test = x_train.astype(np.float32) / 255., x_test.astype(np.float32) / 255.
# we do not need label
train_db = tf.data.Dataset.from_tensor_slices(x_train)
train_db = train_db.shuffle(batchsz * 5).batch(batchsz)
test_db = tf.data.Dataset.from_tensor_slices(x_test)
test_db = test_db.batch(batchsz)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
class AE(keras.Model):
def __init__(self):
super(AE, self).__init__()
# Encoders
self.encoder = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(h_dim)
])
# Decoders
self.decoder = Sequential([
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(784)
])
def call(self, inputs, training=None):
# [b, 784] => [b, 10]
h = self.encoder(inputs)
# [b, 10] => [b, 784]
x_hat = self.decoder(h)
return x_hat
model = AE()
model.build(input_shape=(None, 784))
model.summary()
optimizer = tf.optimizers.Adam(lr=lr)
for epoch in range(100):
for step, x in enumerate(train_db):
#[b, 28, 28] => [b, 784]
x = tf.reshape(x, [-1, 784])
with tf.GradientTape() as tape:
x_rec_logits = model(x)
rec_loss = tf.losses.binary_crossentropy(x, x_rec_logits, from_logits=True)
rec_loss = tf.reduce_mean(rec_loss)
grads = tape.gradient(rec_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if step % 100 ==0:
print(epoch, step, float(rec_loss))
# evaluation
x = next(iter(test_db))
logits = model(tf.reshape(x, [-1, 784]))
x_hat = tf.sigmoid(logits)
# [b, 784] => [b, 28, 28]
x_hat = tf.reshape(x_hat, [-1, 28, 28])
# [b, 28, 28] => [2b, 28, 28]
x_concat = tf.concat([x, x_hat], axis=0)
x_concat = x_hat
x_concat = x_concat.numpy() * 255.
x_concat = x_concat.astype(np.uint8)
save_images(x_concat, 'ae_images/rec_epoch_%d.png'%epoch)
>>> ……
99 0 0.2688389718532562
99 100 0.272990345954895