• 前缀和的本质


    本篇博客将会从贡献的思想认识前缀和.

    首先,我们回顾一下一维前缀和和二维前缀和:

    1. //一维
    2. for (int i = 1; i <= n; ++i)
    3. s[i] = s[i - 1] + a[i];
    4. //二维
    5. for (int i = 1; i <= n; ++i)
    6. for (int j = 1; j <= m; ++j)
    7. s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i];

    当然,也可以这么写:

    1. //一维
    2. for (int i = 1; i <= n; ++i)
    3. s[i] += s[i - 1];
    4. //二维
    5. for (int i = 1; i <= n; ++i)
    6. for (int j = 1; j <= m; ++j)
    7. f[i][j] += f[i - 1][j];
    8. for (int i = 1; i <= n; ++i)
    9. for (int j = 1; j <= m; ++j)
    10. f[i][j] += f[i][j - 1];

    二维前缀和的第一种写法实际上就是容斥原理,不在我们本篇讨论的范围内.

    我们主要讲第二种:

    我们讲每个f[i][j]初始化为一个值a[i][j],如果我们要求二维前缀和,我们考虑a[i][j]对哪些前缀和产生了贡献.

     答案就是上图中的蓝色部分,我们要使得a(i, j)对蓝色部分造成贡献,可以分成两部分,对列造成贡献.

     然后对于每个列,我们往下推

     问题就转化成了,如何让一个点,对这个点后面的直线产生贡献,答案就是一维的前缀和,直接向想要产生贡献的方向累加即可.

    同理,我们想要求左下角方向的"前缀和",我们也可以先向左边累加,然后向下边累加

     同样的,对于更高维的前缀和,我们采取相同的做法.

    CF372B Counting Rectangles is Fun

    题目传送门

     我们先枚举(i, j, i1, j1),如果这是个全0矩阵,我们Q(i, j, i1, j1)++,然后我们假设f(i, j, i1, j1)为这个矩形内部的全0矩阵的个数,考虑每个子矩阵(i, j, i1, j1)产生的贡献.就是红色部分,我们直接按照这些方向累加即可:

     

    1. #include
    2. #define int long long
    3. #define IOS ios::sync_with_stdio(false), cin.tie(0)
    4. #define ll long long
    5. // #define double long double
    6. #define ull unsigned long long
    7. #define PII pair
    8. #define PDI pair
    9. #define PDD pair
    10. #define debug(a) cout << #a << " = " << a << endl
    11. #define point(n) cout << fixed << setprecision(n)
    12. #define all(x) (x).begin(), (x).end()
    13. #define mem(x, y) memset((x), (y), sizeof(x))
    14. #define lbt(x) (x & (-x))
    15. #define SZ(x) ((x).size())
    16. #define inf 0x3f3f3f3f
    17. #define INF 0x3f3f3f3f3f3f3f3f
    18. namespace nqio{const unsigned R = 4e5, W = 4e5; char *a, *b, i[R], o[W], *c = o, *d = o + W, h[40], *p = h, y; bool s; struct q{void r(char &x){x = a == b && (b = (a = i) + fread(i, 1, R, stdin), a == b) ? -1 : *a++;} void f(){fwrite(o, 1, c - o, stdout); c = o;} ~q(){f();}void w(char x){*c = x;if (++c == d) f();} q &operator >>(char &x){do r(x);while (x <= 32); return *this;} q &operator >>(char *x){do r(*x); while (*x <= 32); while (*x > 32) r(*++x); *x = 0; return *this;} template<typename t> q&operator>>(t &x){for (r(y),s = 0; !isdigit(y); r(y)) s |= y == 45;if (s) for (x = 0; isdigit(y); r(y)) x = x * 10 - (y ^ 48); else for (x = 0; isdigit(y); r(y)) x = x * 10 + (y ^ 48); return *this;} q &operator <<(char x){w(x);return *this;}q &operator<< (char *x){while (*x) w(*x++); return *this;}q &operator <<(const char *x){while (*x) w(*x++); return *this;}template<typename t> q &operator<< (t x) {if (!x) w(48); else if (x < 0) for (w(45); x; x /= 10) *p++ = 48 | -(x % 10); else for (; x; x /= 10) *p++ = 48 | x % 10; while (p != h) w(*--p);return *this;}}qio; }using nqio::qio;
    19. using namespace std;
    20. const int N = 1e6 + 10, M = (1 << 21) + 5, MOD = 1e9 + 7;
    21. int n, m, f[M], qp[M] = {1};
    22. void work(int x) {
    23. for (int j = 0; j < 21; ++j)
    24. for (int i = 0; i < (1 << 21); ++i)
    25. if (i >> j & 1)
    26. f[i] = ((f[i] + f[i ^ (1ll << j)] * x % MOD) % MOD + MOD) % MOD;
    27. }
    28. void solve() {
    29. qio >> n >> m;
    30. for (int i = 1; i <= n; ++i) qp[i] = (qp[i - 1] << 1ll) % MOD;
    31. for (int i = 1; i <= n; ++i) {
    32. int k, st = 0;
    33. qio >> k;
    34. for (int j = 1, x; j <= k; ++j) qio >> x, --x, st |= (1ll << x);
    35. ++f[st];
    36. }
    37. work(1);
    38. for (int i = 0; i < (1 << 21); ++i) f[i] = (qp[f[i]] - 1) % MOD;
    39. work(-1);
    40. qio << f[(1 << m) - 1] << '\n';
    41. }
    42. signed main() {
    43. // IOS;
    44. int T = 1;
    45. // qio >> T;
    46. while (T--) solve();
    47. }

    除此之外,前缀和还可以用来解决偏序问题,不过不在此篇讨论范围内.

     

  • 相关阅读:
    C# 45. ref和out的区别
    The specified module could not be found.
    HBuilder有线调试过程中手机显示"接口执行异常"
    m基于自适应门限软切换的3G和Wifi垂直切换算法的matlab仿真
    线程池BUG复现和解决
    从4k到30k,产品路上我从未后悔
    【快乐离散数学】Discrete Structure 课程计划书
    手把手写深度学习(17):用LSTM为图片生成文字描述(Image-to-text任务)
    『PyQt5-Qt Designer篇』| 11 控件之间的伙伴关系和Tab顺序如何设置?
    安卓APP源码和设计报告——基于Android的垃圾分类系统
  • 原文地址:https://blog.csdn.net/CK1513710764/article/details/126149607