目录
将下面两张图像进行拼接

拼接得到一张完整的图像

1.选择特征点
- //1、选择特征点
- //左图 右图 识别特征点 是Mat对象 用c d保存
- surf->detectAndCompute(left,Mat(),key2,d);
- surf->detectAndCompute(right,Mat(),key1,c);
-
- //特征点对比,保存 特征点为中心点区域比对
- vector
matches; - matcher.match(d,c,matches);
-
- //排序从小到大 找到特征点连线
- sort(matches.begin(),matches.end());
2.保存最优的特征点对象
- //2、保存最优的特征点对象
- vector
good_matches; - int ptrpoint = std::min(50,(int)(matches.size()*0.15));
- for (int i = 0;i < ptrpoint;i++)
- {
- good_matches.push_back(matches[i]);
- }
-
- //2-1、画线 最优的特征点对象连线
- Mat outimg;
- drawMatches(left,key2,right,key1,good_matches,outimg,
- Scalar::all(-1),Scalar::all(-1),
- vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
-
- //imshow("outimg",outimg);

3.特征点匹配
- //3、特征点匹配
- vector
imagepoint1,imagepoint2; - for (int i= 0 ;i < good_matches.size();i++)
- {
- //查找特征点可连接处 变形
- imagepoint1.push_back(key1[good_matches[i].trainIdx].pt);
- //查找特征点可连接处 查找基准线
- imagepoint2.push_back(key2[good_matches[i].queryIdx].pt);
- }
4.透视转换 图像融合
- //4、透视转换 图形融合
- Mat homo = findHomography(imagepoint1,imagepoint2,CV_RANSAC);
- //imshow("homo",homo);
-
- //根据透视转换矩阵进行计算 四个坐标
- CalcCorners(homo,right);
-
- //接收透视转换结果
- Mat imageTransForm;
- //透视转换
- warpPerspective(right,imageTransForm,homo,
- Size(MAX(corners.right_top.x,corners.right_bottom.x),left.rows));
-
- //右图透视变换 由于本次图片材料是自己截图拼接的 因此看不出透视变换的明显特征
- //imshow("imageTransForm",imageTransForm);
-
- //结果进行整合
- int dst_width = imageTransForm.cols;
- int dst_height = left.rows;
-
- Mat dst(dst_height,dst_width,CV_8UC3);
- dst.setTo(0);
-
- imageTransForm.copyTo(dst(Rect(0,0,imageTransForm.cols,imageTransForm.rows)));
- left.copyTo(dst(Rect(0,0,left.cols,left.rows)));

右图的透视转换,由于图像材料是自己截图拼接的,因此看不出透视变换的明显特征,但根据上图可知已经做出透视变换图像处理操作

左图与右图的透视转换结果 拼接 【这里只是将窗口移动测试看下前面步骤是否正确】

可以看出左图与右图的透视转换结果 是可以进行接下来的图像融合操作的
5.优化图像 进行最终的结果展示
- //5、优化图像
- OptimizeSeam(left,imageTransForm,dst);
-
- //最终图像拼接结果
- imshow("dst",dst);

可以看出 顺利完成 两张图像拼接的图像处理操作

- #include
- #include
- #include
//图像融合 - #include
//拼接算法 - #include
- #include
-
- using namespace std;
- using namespace cv;
- using namespace cv::xfeatures2d;
-
- typedef struct
- {
- Point2f left_top;
- Point2f left_bottom;
- Point2f right_top;
- Point2f right_bottom;
- }four_corners_t;
-
- four_corners_t corners;
-
- void CalcCorners(const Mat& H, const Mat& src)
- {
- double v2[] = { 0, 0, 1 };//左上角
- double v1[3];//变换后的坐标值
- Mat V2 = Mat(3, 1, CV_64FC1, v2); //列向量
- Mat V1 = Mat(3, 1, CV_64FC1, v1); //列向量
-
- V1 = H * V2;
- //左上角(0,0,1)
- cout << "V2: " << V2 << endl;
- cout << "V1: " << V1 << endl;
- corners.left_top.x = v1[0] / v1[2];
- corners.left_top.y = v1[1] / v1[2];
-
- //左下角(0,src.rows,1)
- v2[0] = 0;
- v2[1] = src.rows;
- v2[2] = 1;
- V2 = Mat(3, 1, CV_64FC1, v2); //列向量
- V1 = Mat(3, 1, CV_64FC1, v1); //列向量
- V1 = H * V2;
- corners.left_bottom.x = v1[0] / v1[2];
- corners.left_bottom.y = v1[1] / v1[2];
-
- //右上角(src.cols,0,1)
- v2[0] = src.cols;
- v2[1] = 0;
- v2[2] = 1;
- V2 = Mat(3, 1, CV_64FC1, v2); //列向量
- V1 = Mat(3, 1, CV_64FC1, v1); //列向量
- V1 = H * V2;
- corners.right_top.x = v1[0] / v1[2];
- corners.right_top.y = v1[1] / v1[2];
-
- //右下角(src.cols,src.rows,1)
- v2[0] = src.cols;
- v2[1] = src.rows;
- v2[2] = 1;
- V2 = Mat(3, 1, CV_64FC1, v2); //列向量
- V1 = Mat(3, 1, CV_64FC1, v1); //列向量
- V1 = H * V2;
- corners.right_bottom.x = v1[0] / v1[2];
- corners.right_bottom.y = v1[1] / v1[2];
-
- }
-
- //图像融合的去裂缝处理操作
- void OptimizeSeam(Mat& img1, Mat& trans, Mat& dst)
- {
- int start = MIN(corners.left_top.x, corners.left_bottom.x);//开始位置,即重叠区域的左边界
-
- double processWidth = img1.cols - start;//重叠区域的宽度
- int rows = dst.rows;
- int cols = img1.cols; //注意,是列数*通道数
- double alpha = 1;//img1中像素的权重
- for (int i = 0; i < rows; i++)
- {
- uchar* p = img1.ptr
(i); //获取第i行的首地址 - uchar* t = trans.ptr
(i); - uchar* d = dst.ptr
(i); - for (int j = start; j < cols; j++)
- {
- //如果遇到图像trans中无像素的黑点,则完全拷贝img1中的数据
- if (t[j * 3] == 0 && t[j * 3 + 1] == 0 && t[j * 3 + 2] == 0)
- {
- alpha = 1;
- }
- else
- {
- //img1中像素的权重,与当前处理点距重叠区域左边界的距离成正比,实验证明,这种方法确实好
- alpha = (processWidth - (j - start)) / processWidth;
- }
-
- d[j * 3] = p[j * 3] * alpha + t[j * 3] * (1 - alpha);
- d[j * 3 + 1] = p[j * 3 + 1] * alpha + t[j * 3 + 1] * (1 - alpha);
- d[j * 3 + 2] = p[j * 3 + 2] * alpha + t[j * 3 + 2] * (1 - alpha);
-
- }
- }
- }
-
- int main()
- {
- //左图
- Mat left = imread("D:/00000000000003jieduanshipincailliao/a1.png");
- //右图
- Mat right = imread("D:/00000000000003jieduanshipincailliao/a2.png");
-
- //左右图显示
- imshow("left",left);
- imshow("right",right);
-
- //创建SURF对象
- Ptr
surf; - //create 函数参数 海森矩阵阀值 800特征点以内
- surf = SURF::create(800);
-
- //创建一个暴力匹配器 用于特征点匹配
- BFMatcher matcher;
-
- //特征点容器 存放特征点KeyPoint
- vector
key1,key2; - //保存特征点
- Mat c,d;
-
- //1、选择特征点
- //左图 右图 识别特征点 是Mat对象 用c d保存
- surf->detectAndCompute(left,Mat(),key2,d);
- surf->detectAndCompute(right,Mat(),key1,c);
-
- //特征点对比,保存 特征点为中心点区域比对
- vector
matches; - matcher.match(d,c,matches);
-
- //排序从小到大 找到特征点连线
- sort(matches.begin(),matches.end());
-
- //2、保存最优的特征点对象
- vector
good_matches; - int ptrpoint = std::min(50,(int)(matches.size()*0.15));
- for (int i = 0;i < ptrpoint;i++)
- {
- good_matches.push_back(matches[i]);
- }
-
- //2-1、画线 最优的特征点对象连线
- Mat outimg;
- drawMatches(left,key2,right,key1,good_matches,outimg,
- Scalar::all(-1),Scalar::all(-1),
- vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
-
- //imshow("outimg",outimg);
-
- //3、特征点匹配
- vector
imagepoint1,imagepoint2; - for (int i= 0 ;i < good_matches.size();i++)
- {
- //查找特征点可连接处 变形
- imagepoint1.push_back(key1[good_matches[i].trainIdx].pt);
- //查找特征点可连接处 查找基准线
- imagepoint2.push_back(key2[good_matches[i].queryIdx].pt);
- }
-
- //4、透视转换 图形融合
- Mat homo = findHomography(imagepoint1,imagepoint2,CV_RANSAC);
- //imshow("homo",homo);
-
- //根据透视转换矩阵进行计算 四个坐标
- CalcCorners(homo,right);
-
- //接收透视转换结果
- Mat imageTransForm;
- //透视转换
- warpPerspective(right,imageTransForm,homo,
- Size(MAX(corners.right_top.x,corners.right_bottom.x),left.rows));
-
- //右图透视变换 由于本次图片材料是自己截图拼接的 因此看不出透视变换的明显特征
- //imshow("imageTransForm",imageTransForm);
-
- //结果进行整合
- int dst_width = imageTransForm.cols;
- int dst_height = left.rows;
-
- Mat dst(dst_height,dst_width,CV_8UC3);
- dst.setTo(0);
-
- imageTransForm.copyTo(dst(Rect(0,0,imageTransForm.cols,imageTransForm.rows)));
- left.copyTo(dst(Rect(0,0,left.cols,left.rows)));
-
- //5、优化图像
- OptimizeSeam(left,imageTransForm,dst);
-
- //最终图像拼接结果
- imshow("dst",dst);
-
- waitKey(0);
-
- return 0;
- }
如下四张图片拼接,可使用Stitcher算法【多张图片拼接】




完整代码如下:
- #include
- #include
- #include
//图像融合 - #include
//拼接算法 - #include
- #include
-
- using namespace std;
- using namespace cv;
- using namespace cv::xfeatures2d;
-
- void example()
- {
- Mat img1 = imread("D:/00000000000003jieduanshipincailliao/b1.png");
- Mat img2 = imread("D:/00000000000003jieduanshipincailliao/b2.png");
- Mat img3 = imread("D:/00000000000003jieduanshipincailliao/b3.png");
- Mat img4 = imread("D:/00000000000003jieduanshipincailliao/b4.png");
-
- imshow("img1",img1);
- imshow("img2",img2);
- imshow("img3",img3);
- imshow("img4",img4);
-
- //带顺序容器vector
- vector
images; - images.push_back(img1);
- images.push_back(img2);
- images.push_back(img3);
- images.push_back(img4);
-
- //用来保存最终拼接图
- Mat result;
-
- //false 不使用GPU加速
- Stitcher sti = Stitcher::createDefault(false);
- //将向量容器中所有的图片按照顺序进行拼接,结果保存在result中
- Stitcher::Status sta = sti.stitch(images,result);
-
- if(sta != Stitcher::OK)
- {
- cout<<"canot Stitcher"<
- }
-
- imshow("result",result);
-
- waitKey(0);
- }
-
- int main()
- {
- example();
- return 0;
- }
