• Python:实现perceptron算法(附完整源码)


    Python:实现perceptron算法

    import random
    class Perceptron:
        def __init__(
            self,
            sample: list[list[float]],
            target: list[int],
            learning_rate: float = 0.01,
            epoch_number: int = 1000,
            bias: float = -1,
        ) -> None:
            """
            Initializes a Perceptron network for oil analysis
            :param sample: sample dataset of 3 parameters with shape [30,3]
            :param target: variable for classification with two possible states -1 or 1
            :param learning_rate: learning rate used in optimizing.
            :param epoch_number: number of epochs to train network on.
            :param bias: bias value for the network.
    
            >>> p = Perceptron([], (0, 1, 2))
            Traceback (most recent call last):
            ...
            ValueError: Sample data can not be empty
            >>> p = Perceptron(([0], 1, 2), [])
            Traceback (most recent call last):
            ...
            ValueError: Target data can not be empty
            >>> p = Perceptron(([0], 1, 2), (0, 1))
            Traceback (most recent call last):
            ...
            ValueError: Sample data and Target data do not have matching lengths
            """
            self.sample = sample
            if len(self.sample) == 0:
                raise ValueError("Sample data can not be empty")
            self.target = target
            if len(self.target) == 0:
                raise ValueError("Target data can not be empty")
            if len(self.sample) != len(self.target):
                raise ValueError("Sample data and Target data do not have matching lengths")
            self.learning_rate = learning_rate
            self.epoch_number = epoch_number
            self.bias = bias
            self.number_sample = len(sample)
            self.col_sample = len(sample[0])  # number of columns in dataset
            self.weight: list = []
    
        def training(self) -> None:
            """
            Trains perceptron for epochs <= given number of epochs
            :return: None
            >>> data = [[2.0149, 0.6192, 10.9263]]
            >>> targets = [-1]
            >>> perceptron = Perceptron(data,targets)
            >>> perceptron.training() # doctest: +ELLIPSIS
            ('\\nEpoch:\\n', ...)
            ...
            """
            for sample in self.sample:
                sample.insert(0, self.bias)
    
            for i in range(self.col_sample):
                self.weight.append(random.random())
    
            self.weight.insert(0, self.bias)
    
            epoch_count = 0
    
            while True:
                has_misclassified = False
                for i in range(self.number_sample):
                    u = 0
                    for j in range(self.col_sample + 1):
                        u = u + self.weight[j] * self.sample[i][j]
                    y = self.sign(u)
                    if y != self.target[i]:
                        for j in range(self.col_sample + 1):
                            self.weight[j] = (
                                self.weight[j]
                                + self.learning_rate
                                * (self.target[i] - y)
                                * self.sample[i][j]
                            )
                        has_misclassified = True
                # print('Epoch: \n',epoch_count)
                epoch_count = epoch_count + 1
                # if you want control the epoch or just by error
                if not has_misclassified:
                    print(("\nEpoch:\n", epoch_count))
                    print("------------------------\n")
                    # if epoch_count > self.epoch_number or not error:
                    break
    
        def sort(self, sample: list[float]) -> None:
            """
            :param sample: example row to classify as P1 or P2
            :return: None
            >>> data = [[2.0149, 0.6192, 10.9263]]
            >>> targets = [-1]
            >>> perceptron = Perceptron(data,targets)
            >>> perceptron.training() # doctest: +ELLIPSIS
            ('\\nEpoch:\\n', ...)
            ...
            >>> perceptron.sort([-0.6508, 0.1097, 4.0009]) # doctest: +ELLIPSIS
            ('Sample: ', ...)
            classification: P...
            """
            if len(self.sample) == 0:
                raise ValueError("Sample data can not be empty")
            sample.insert(0, self.bias)
            u = 0
            for i in range(self.col_sample + 1):
                u = u + self.weight[i] * sample[i]
    
            y = self.sign(u)
    
            if y == -1:
                print(("Sample: ", sample))
                print("classification: P1")
            else:
                print(("Sample: ", sample))
                print("classification: P2")
    
        def sign(self, u: float) -> int:
            """
            threshold function for classification
            :param u: input number
            :return: 1 if the input is greater than 0, otherwise -1
            >>> data = [[0],[-0.5],[0.5]]
            >>> targets = [1,-1,1]
            >>> perceptron = Perceptron(data,targets)
            >>> perceptron.sign(0)
            1
            >>> perceptron.sign(-0.5)
            -1
            >>> perceptron.sign(0.5)
            1
            """
            return 1 if u >= 0 else -1
    
    
    samples = [
        [-0.6508, 0.1097, 4.0009],
        [-1.4492, 0.8896, 4.4005],
        [2.0850, 0.6876, 12.0710],
        [0.2626, 1.1476, 7.7985],
        [0.6418, 1.0234, 7.0427],
        [0.2569, 0.6730, 8.3265],
        [1.1155, 0.6043, 7.4446],
        [0.0914, 0.3399, 7.0677],
        [0.0121, 0.5256, 4.6316],
        [-0.0429, 0.4660, 5.4323],
        [0.4340, 0.6870, 8.2287],
        [0.2735, 1.0287, 7.1934],
        [0.4839, 0.4851, 7.4850],
        [0.4089, -0.1267, 5.5019],
        [1.4391, 0.1614, 8.5843],
        [-0.9115, -0.1973, 2.1962],
        [0.3654, 1.0475, 7.4858],
        [0.2144, 0.7515, 7.1699],
        [0.2013, 1.0014, 6.5489],
        [0.6483, 0.2183, 5.8991],
        [-0.1147, 0.2242, 7.2435],
        [-0.7970, 0.8795, 3.8762],
        [-1.0625, 0.6366, 2.4707],
        [0.5307, 0.1285, 5.6883],
        [-1.2200, 0.7777, 1.7252],
        [0.3957, 0.1076, 5.6623],
        [-0.1013, 0.5989, 7.1812],
        [2.4482, 0.9455, 11.2095],
        [2.0149, 0.6192, 10.9263],
        [0.2012, 0.2611, 5.4631],
    ]
    
    exit = [
        -1,
        -1,
        -1,
        1,
        1,
        -1,
        1,
        -1,
        1,
        1,
        -1,
        1,
        -1,
        -1,
        -1,
        -1,
        1,
        1,
        1,
        1,
        -1,
        1,
        1,
        1,
        1,
        -1,
        -1,
        1,
        -1,
        1,
    ]
    
    
    if __name__ == "__main__":
        import doctest
    
        doctest.testmod()
    
        network = Perceptron(
            sample=samples, target=exit, learning_rate=0.01, epoch_number=1000, bias=-1
        )
        network.training()
        print("Finished training perceptron")
        print("Enter values to predict or q to exit")
        while True:
            sample: list = []
            for i in range(len(samples[0])):
                user_input = input("value: ").strip()
                if user_input == "q":
                    break
                observation = float(user_input)
                sample.insert(i, observation)
            network.sort(sample)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
  • 相关阅读:
    正则验证用户名和跨域postmessage
    Ubuntu安装桌面环境以及远程桌面连接
    初识MySQL
    高速电路设计笔记----第一章
    正点原子开拓者FPGA,程序固化下载到板子里面
    SpringMVC(二)响应
    Java 命令行工具
    设计模式:命令模式(C++实现)
    C++设计模式-创建型设计模式:构建者(Builder)
    JAVA最全面试题汇总基础篇(一)
  • 原文地址:https://blog.csdn.net/it_xiangqiang/article/details/126128406