摘要: 当前工业信息物理系统网络环境下的网络数据呈现出比以往更为庞大和复杂的特性,传统采用机器学习方式提取特征的过程繁琐且计算量大,不利于实时检测工业网络数据流量.鉴于此,研究一种基于深度自编码网络的集成学习入侵检测模型.首先,通过栈式叠加多个正则降噪自编码网络构造深度自编码网络,以非线性方式降低数据特征维数,获取到新的低维特征数据集;然后,采用集成多个深度信念网络模型以投票方式对降维后数据进行分类识别.实验结果表明,通过比对传统的降维方式和入侵检测方法,本文方法在分类性能和检测效率方面均有较优的效果.
关键词: 工业信息物理系统 正则降噪自编码网络