带有自动变量(局部变量)的匿名函数叫做block。
__NSGlobalBlock____NSMallocBlock____NSStackBlock__总结:
不使用外界变量的block是
__NSGlobalBlock__类型
使用外界变量的block是__NSMallocBlock__类型
在堆block拷贝前的block是__NSStackBlock__类型
除此之外,还有三种系统级别的block类型
_NSConcreteAutoBlock_NSConcreteFinalizingBlock_NSConcreteWeakBlockVariableself.name = @"Billy";
self.block = ^{
NSLog(@"%@", self.name);
};
同时,编译器给出警告:
⚠️Capturing 'self' strongly in this block is likely to lead to a retain cycle
循环引用的问题在于:
self持有了blockblock持有了self(self.name)这样就形成了self -> block -> self的循环引用。循环引用时:A、B互相引用,引用计数不能为0,dealloc不会被调用。
__weak typeof(self) weakSelf = self;
self.name = @"Billy";
self.block = ^{
NSLog(@"%@", weakSelf.name);
};
使用 中介者模式 __weak typeof(self) weakSelf = self将循环引用改为weakself -> self -> block -> weakself。表面看上去还是一个“引用圈”,但是weakself -> self这一层是弱引用——引用计数不处理,使用weak表管理。所以此时在页面析构时self就能正常的调用dealloc了。
但并不是最终的解决方案,此时仍有可能存在着问题,比如如下代码:
__weak typeof(self) weakSelf = self;
self.name = @"Billy";
self.block = ^{
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"%@", weakSelf.name);
});
};
这种延时情况,如若调用block之后立马返回上一页进行页面释放,3秒后weakself指向的self已经为nil了,此时的打印就只能打印出null。
于是就有了强弱共舞:
__weak typeof(self) weakSelf = self;
self.name = @"Billy";
self.block = ^{
__strong typeof(weakSelf) strongSelf = weakSelf;
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"%@", strongSelf.name);
});
};
再加一层临时的强持有,此时的引用就变成了strongself -> weakself -> self -> block -> strongself
看上去又是一个循环引用,但实际上strongSelf是个临时变量,当block作用域结束后就会释放,从而打破循环引用进行释放(让释放延后了3秒)。
既然有自动置空,那么也可以手动置空。
__block UIViewController *viewController = self;
self.name = @"Billy";
self.block = ^{
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"%@", viewController.name);
viewController = nil;
});
};
上述代码也是使用 中介者模式 打破循环应用的——使用viewController作为中介者代替self从而打破循环引用
此时的引用情况为viewController -> self -> block -> viewController (viewController在用完之后手动置空),这里依然会存在问题:但是只要不调用block,仍然存在着循环应用。
解决循环引用还有一种方式——不引用
self.name = @"Felix";
self.block = ^(UIViewController *viewController) {
dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(3 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{
NSLog(@"%@", viewController.name);
viewController = nil;
});
}
上述代码使用当前viewController作为参数传入block时拷贝一份,就不会出现持有的情况,同时还能使用self的内存空间,能够完美避免循环引用。
Masonry中是否存在循环引用?A:
Monsary使用的block是当做参数传递的,即便block内部持有self,设置布局的view持有block,但是block不持有view,当block执行完后就释放了,self的引用计数-1,所以block也不会持有self,所以不会导致循环引用
[UIView animateWithDuration: animations:]中是否存在循环引用?A:
UIView动画是类方法,不被self持有(即self持有了view,但view没有实例化)所以不会循环引用
int main(int argc, const char * argv[]) {
// int a = 10;
void(^block)(void) = ^{
printf("Billy");
// printf("Billy - %d",a);
};
block();
return 0;
}
转化成C++代码:
int main(int argc, const char * argv[]) {
void(*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA));
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
return 0;
}
从main函数中可以看到block的赋值是__main_block_impl_0类型,它是C++中的构造函数:
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int flags=0) {
impl.isa = &_NSConcreteStackBlock;
impl.Flags = flags;
impl.FuncPtr = fp;
Desc = desc;
}
};
block的本质是个
__main_block_impl_0的结构体对象
fp传递了具体的block的实现__main_block_func_0,然后保存在block结构体的impl中,这就说明了block声明只是将block实现保存起来,具体的函数实现需要自行调用。
int main(int argc, const char * argv[]) {
int a = 10;
void(^block)(void) = ^{
// printf("Billy");
printf("Billy - %d",a);
};
block();
return 0;
}
此时的block构造函数中就会多出一个参数a,并且在block结构体中也会多出一个属性a。
struct __main_block_impl_0 {
struct __block_impl impl;
struct __main_block_desc_0* Desc;
int a;
__main_block_impl_0(void *fp, struct __main_block_desc_0 *desc, int _a, int flags=0) : a(_a) {
...
}
};
static void __main_block_func_0(struct __main_block_impl_0 *__cself) {
int a = __cself->a; // bound by copy
printf("Billy - %d",a);
}
...
int main(int argc, const char * argv[]) {
int a = 10;
void(*block)(void) = ((void (*)())&__main_block_impl_0((void *)__main_block_func_0, &__main_block_desc_0_DATA, a));
((void (*)(__block_impl *))((__block_impl *)block)->FuncPtr)((__block_impl *)block);
return 0;
}
接着看__main_block_func_0的实现
__cself是__main_block_impl_0的指针,即block本身
int a = __cself->a即int a = block->a
由于a只是个属性,所以是堆block只是值拷贝(值相同,内存地址不同)
这也是为什么捕获的外界变量不能直接进行操作的原因,如a++会报错
int main(int argc, const char * argv[]) {
__block int a = 10;
void(^block)(void) = ^{
// printf("Billy");
printf("Billy - %d",a);
};
block();
return 0;
}

__block修饰的属性在底层会生成响应的结构体,保存原始变量的指针,并传递一个指针地址给block,因此是指针拷贝。
我们打断点调试:

可以看到objc_retainBlock,继续step into:

可以看到调用block的copy函数:_Block_copy。
struct Block_layout *aBlock;
if (!arg) return NULL;
// The following would be better done as a switch statement
aBlock = (struct Block_layout *)arg;
// 判断flags标识位
if (aBlock->flags & BLOCK_NEEDS_FREE) {
// latches on high
latching_incr_int(&aBlock->flags);
return aBlock;
}
static int32_t latching_incr_int(volatile int32_t *where) {
while (1) {
int32_t old_value = *where;
if ((old_value & BLOCK_REFCOUNT_MASK) == BLOCK_REFCOUNT_MASK) {
return BLOCK_REFCOUNT_MASK;
}
if (OSAtomicCompareAndSwapInt(old_value, old_value+2, where)) {
return old_value+2;
}
}
}
为什么引用计数是 +2 而不是 +1 ?因为flags的第一号位置已经存储着释放标记。
else if (aBlock->flags & BLOCK_IS_GLOBAL) {
return aBlock;
}
是否是全局block——是的话直接返回block
else {
// Its a stack block. Make a copy.
size_t size = Block_size(aBlock);
struct Block_layout *result = (struct Block_layout *)malloc(size);
// 开辟堆空间
if (!result) return NULL;
memmove(result, aBlock, size); // bitcopy first
#if __has_feature(ptrauth_calls)
// Resign the invoke pointer as it uses address authentication.
result->invoke = aBlock->invoke;
#if __has_feature(ptrauth_signed_block_descriptors)
if (aBlock->flags & BLOCK_SMALL_DESCRIPTOR) {
uintptr_t oldDesc = ptrauth_blend_discriminator(
&aBlock->descriptor,
_Block_descriptor_ptrauth_discriminator);
uintptr_t newDesc = ptrauth_blend_discriminator(
&result->descriptor,
_Block_descriptor_ptrauth_discriminator);
result->descriptor =
ptrauth_auth_and_resign(aBlock->descriptor,
ptrauth_key_asda, oldDesc,
ptrauth_key_asda, newDesc);
}
#endif
#endif
// reset refcount
result->flags &= ~(BLOCK_REFCOUNT_MASK|BLOCK_DEALLOCATING); // XXX not needed
result->flags |= BLOCK_NEEDS_FREE | 2; // logical refcount 1
_Block_call_copy_helper(result, aBlock);
// Set isa last so memory analysis tools see a fully-initialized object.
result->isa = _NSConcreteMallocBlock;
return result;
}
malloc在堆区开辟一片空间memmove将数据从栈区拷贝到堆区invoke、flags同时进行修改isa标记成_NSConcreteMallocBlockblock中的第一层拷贝其实就是上面的_Block_copy,将block从栈拷贝到堆。
在函数声明时会传__main_block_desc_0_DATA结构体,在里面又会去调用__main_block_copy_0函数,__main_block_copy_0里面会调用_Block_object_assign——这就是第二层拷贝的调用入口。
//
// When Blocks or Block_byrefs hold objects then their copy routine helpers use this entry point
// to do the assignment.
//
void _Block_object_assign(void *destArg, const void *object, const int flags) {
const void **dest = (const void **)destArg;
switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
case BLOCK_FIELD_IS_OBJECT:
/*******
id object = ...;
[^{ object; } copy];
********/
_Block_retain_object(object);
*dest = object;
break;
case BLOCK_FIELD_IS_BLOCK:
/*******
void (^object)(void) = ...;
[^{ object; } copy];
********/
*dest = _Block_copy(object);
break;
case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
case BLOCK_FIELD_IS_BYREF:
/*******
// copy the onstack __block container to the heap
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__block ... x;
__weak __block ... x;
[^{ x; } copy];
********/
*dest = _Block_byref_copy(object);
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
/*******
// copy the actual field held in the __block container
// Note this is MRC unretained __block only.
// ARC retained __block is handled by the copy helper directly.
__block id object;
__block void (^object)(void);
[^{ object; } copy];
********/
*dest = object;
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_WEAK:
/*******
// copy the actual field held in the __block container
// Note this __weak is old GC-weak/MRC-unretained.
// ARC-style __weak is handled by the copy helper directly.
__weak __block id object;
__weak __block void (^object)(void);
[^{ object; } copy];
********/
*dest = object;
break;
default:
break;
}
}
根据flags & BLOCK_ALL_COPY_DISPOSE_FLAGS进到不同分支来处理捕获到的变量
| 枚举值 | 数值 | 含义 |
|---|---|---|
| BLOCK_FIELD_IS_OBJECT | 3 | 对象 |
| BLOCK_FIELD_IS_BLOCK | 7 | block变量 |
| BLOCK_FIELD_IS_BYREF | 8 | __block修饰的结构体 |
| BLOCK_FIELD_IS_WEAK | 16 | __weak修饰的变量 |
| BLOCK_BYREF_CALLER | 128 | 处理block_byref内部对象内存的时候会加的一个额外的标记,配合上面的枚举一起使用 |
此时捕获到的变量是被__block修饰的BLOCK_FIELD_IS_BYREF类型,就会调用*dest = _Block_byref_copy(object);。
static struct Block_byref *_Block_byref_copy(const void *arg) {
// 临时变量的保存
struct Block_byref *src = (struct Block_byref *)arg;
if ((src->forwarding->flags & BLOCK_REFCOUNT_MASK) == 0) {
// src points to stack
// 用原目标的大小在堆区生成一个Block_byref
struct Block_byref *copy = (struct Block_byref *)malloc(src->size);
copy->isa = NULL;
// byref value 4 is logical refcount of 2: one for caller, one for stack
copy->flags = src->flags | BLOCK_BYREF_NEEDS_FREE | 4;
// 原来的区域和新的区域都指向同一个对象,使得block具备了修改能力
copy->forwarding = copy; // patch heap copy to point to itself
src->forwarding = copy; // patch stack to point to heap copy
copy->size = src->size;
if (src->flags & BLOCK_BYREF_HAS_COPY_DISPOSE) {
// Trust copy helper to copy everything of interest
// If more than one field shows up in a byref block this is wrong XXX
struct Block_byref_2 *src2 = (struct Block_byref_2 *)(src+1);
struct Block_byref_2 *copy2 = (struct Block_byref_2 *)(copy+1);
copy2->byref_keep = src2->byref_keep;
copy2->byref_destroy = src2->byref_destroy;
if (src->flags & BLOCK_BYREF_LAYOUT_EXTENDED) {
struct Block_byref_3 *src3 = (struct Block_byref_3 *)(src2+1);
struct Block_byref_3 *copy3 = (struct Block_byref_3*)(copy2+1);
copy3->layout = src3->layout;
}
// 第三层拷贝
(*src2->byref_keep)(copy, src);
}
else {
// Bitwise copy.
// This copy includes Block_byref_3, if any.
memmove(copy+1, src+1, src->size - sizeof(*src));
}
}
// already copied to heap
else if ((src->forwarding->flags & BLOCK_BYREF_NEEDS_FREE) == BLOCK_BYREF_NEEDS_FREE) {
latching_incr_int(&src->forwarding->flags);
}
return src->forwarding;
}
name的大小在堆区生成一个Block_byrefcopy->forwarding = copy; & src->forwarding = copy;——原来的区域和新的区域都指向同一个对象,使得block具备了修改能力(*src2->byref_keep)(copy, src)开始第三层拷贝(*src2->byref_keep)(copy, src)点进去会来到Block_byref结构来,而byref_keep是Block_byref的第5个属性
struct Block_byref {
void * __ptrauth_objc_isa_pointer isa;
struct Block_byref *forwarding;
volatile int32_t flags; // contains ref count
uint32_t size;
};
struct Block_byref_2 {
// requires BLOCK_BYREF_HAS_COPY_DISPOSE
BlockByrefKeepFunction byref_keep;
BlockByrefDestroyFunction byref_destroy;
};
struct Block_byref_3 {
// requires BLOCK_BYREF_LAYOUT_EXTENDED
const char *layout;
};

第5位就等于byref_keep,所以在第二层拷贝时会调用__Block_byref_id_object_copy_131。
static void __Block_byref_id_object_copy_131(void *dst, void *src) {
_Block_object_assign((char*)dst + 40, *(void * *) ((char*)src + 40), 131);
}
static void __Block_byref_id_object_dispose_131(void *src) {
_Block_object_dispose(*(void * *) ((char*)src + 40), 131);
}
这个(char*)dst + 40看到__Block_byref_name_0就顿悟了,刚好取得变量name对象。
struct __Block_byref_name_0 {
void *__isa;
__Block_byref_name_0 *__forwarding;
int __flags;
int __size;
void (*__Block_byref_id_object_copy)(void*, void*);
void (*__Block_byref_id_object_dispose)(void*);
NSString *name;
};
而_Block_object_assign在对BLOCK_FIELD_IS_OBJECT情况时会做出如下操作:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
/*******
// copy the actual field held in the __block container
// Note this is MRC unretained __block only.
// ARC retained __block is handled by the copy helper directly.
__block id object;
__block void (^object)(void);
[^{ object; } copy];
********/
*dest = object;
break;
block捕获的外接变量由ARC自动管理,捕获到name进行拷贝
block中有三层拷贝:拷贝block、拷贝捕获变量的内存地址、拷贝对象
void _Block_object_dispose(const void *object, const int flags) {
switch (os_assumes(flags & BLOCK_ALL_COPY_DISPOSE_FLAGS)) {
case BLOCK_FIELD_IS_BYREF | BLOCK_FIELD_IS_WEAK:
case BLOCK_FIELD_IS_BYREF:
// get rid of the __block data structure held in a Block
_Block_byref_release(object);
break;
case BLOCK_FIELD_IS_BLOCK:
_Block_release(object);
break;
case BLOCK_FIELD_IS_OBJECT:
_Block_release_object(object);
break;
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_OBJECT | BLOCK_FIELD_IS_WEAK:
case BLOCK_BYREF_CALLER | BLOCK_FIELD_IS_BLOCK | BLOCK_FIELD_IS_WEAK:
break;
default:
break;
}
}
// API entry point to release a copied Block
void _Block_release(const void *arg) {
struct Block_layout *aBlock = (struct Block_layout *)arg;
if (!aBlock) return;
if (aBlock->flags & BLOCK_IS_GLOBAL) return;
if (! (aBlock->flags & BLOCK_NEEDS_FREE)) return;
if (latching_decr_int_should_deallocate(&aBlock->flags)) {
_Block_call_dispose_helper(aBlock);
_Block_destructInstance(aBlock);
free(aBlock);
}
}
__block修饰,就将指向指回原来的区域并使用free释放