# Random Forest Regressor Examplefrom sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
defmain():# Load Boston house price dataset
boston = load_boston()print(boston.keys())# Split dataset into train and test data
X = boston["data"]# features
Y = boston["target"]
x_train, x_test, y_train, y_test = train_test_split(
X, Y, test_size=0.3, random_state=1)# Random Forest Regressor
rand_for = RandomForestRegressor(random_state=42, n_estimators=300)
rand_for.fit(x_train, y_train)# Predict target for test data
predictions = rand_for.predict(x_test)
predictions = predictions.reshape(len(predictions),1)# Error printingprint(f"Mean Absolute Error:\t {mean_absolute_error(y_test, predictions)}")print(f"Mean Square Error :\t {mean_squared_error(y_test, predictions)}")if __name__ =="__main__":
main()