• POJ3268最短路径题解


    POJ3268最短路径题解

    题目

    链接

    http://poj.org/problem?id=3268

    字面描述

    Silver Cow Party
    Time Limit: 2000MS Memory Limit: 65536K
    Total Submissions: 46808 Accepted: 20917
    Description

    One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1…N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

    Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow’s return route might be different from her original route to the party since roads are one-way.

    Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

    Input

    Line 1: Three space-separated integers, respectively: N, M, and X
    Lines 2…M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
    Output

    Line 1: One integer: the maximum of time any one cow must walk.
    Sample Input

    4 8 2
    1 2 4
    1 3 2
    1 4 7
    2 1 1
    2 3 5
    3 1 2
    3 4 4
    4 2 3
    Sample Output

    10
    Hint

    Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.
    Source

    USACO 2007 February Silver

    思路

    这道题有来回求,但并没有直接给出源点。
    开始我们已x为源点,向其他点做最短路
    接下来任意一点均要到x点做最短路
    最后比较出两者之和的最大值

    代码实现

    #include
    #include
    #include
    #include
    using namespace std;
    
    const int maxn=1e3+10;
    const int maxm=1e5+10;
    int n,m,x,cnt,ans;
    int head[maxn],dis[maxn],dis1[maxn],dis2[maxn];
    bool vis[maxn];
    struct node{
    	int v,w,nxt;
    }e[maxm];
    inline bool add(int u,int v,int w){
    	e[++cnt].v=v;
    	e[cnt].w=w;
    	e[cnt].nxt=head[u];
    	head[u]=cnt;
    }
    inline void Dijkstra(int u){
    	queue<int>q;
    	memset(vis,false,sizeof(vis));
    	memset(dis,0x3f,sizeof(dis));
    	dis[u]=0;
    	vis[u]=true;
    	q.push(u);
    	while(!q.empty()){
    		int x=q.front();
    		q.pop();
    		vis[x]=false;
    		for(int i=head[x];i;i=e[i].nxt){
    			if(dis[e[i].v]>dis[x]+e[i].w){
    				dis[e[i].v]=dis[x]+e[i].w;
    				if(!vis[e[i].v]){
    					vis[e[i].v]=true;
    					q.push(e[i].v);
    				}
    			}
    		}
    	}
    } 
    int main(){
    	scanf("%d%d%d",&n,&m,&x);
    	for(int i=1;i<=m;i++){
    		int u,v,w;
    		scanf("%d%d%d",&u,&v,&w);
    		add(u,v,w);
    	}
    	Dijkstra(x);
    	for(int i=1;i<=n;i++)dis1[i]=dis[i];
    	for(int i=1;i<=n;i++){
    		Dijkstra(i);
    		dis2[i]=dis[x];
    		ans=max(ans,dis1[i]+dis2[i]);
    	} 
    	printf("%d\n",ans);
    	return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
  • 相关阅读:
    相机突然断电,保存的DAT视频文件如何修复
    LeetCode287之寻找重复数(相关话题:二分查找,快慢指针)
    重塑消费者与商家关系的力量
    1.4 Financial Disasters
    数据库的常用操作
    HTTP状态码是什么?
    div中的两个元素怎么实现上下排列
    全量知识系统问题及SmartChat给出的答复 之18 生存拓扑控制+因子分析实现自然语言处理中的特征提取及语义关联
    一款好用的PDF转翻页电子书网站
    Yii2 ActiveRecord连接OpenGauss提示表不存在table not exist
  • 原文地址:https://blog.csdn.net/weixin_42178241/article/details/126012588