Counter计数,以下的例子,找出列表中元素的重复次数:
from collections import Counter
device_temperatures = [13.5, 14.0, 14.0, 14.5, 14.5, 14.5, 15.0, 16.0]
temperature_counter = Counter(device_temperatures)
# Counter({14.5: 3, 14.0: 2, 13.5: 1, 15.0: 1, 16.0: 1})
print(temperature_counter)
print(type(temperature_counter)) # <class 'collections.Counter'>
print(temperature_counter[13.5]) # 1
print(temperature_counter[14.0]) # 2
print(temperature_counter[14.5]) # 3
print(temperature_counter[15.0]) # 1
print(temperature_counter[16.0]) # 1
defaultdict如下的代码将产生错误 KeyError,因为 my_dict 里没有为 'hi' 的 key:
my_dict={'hello':5}
print(my_dict['hi'])
# Traceback (most recent call last):
# File "<string>", line 4, in <module>
# KeyError: 'hi'
# >
与之相反, defaultdict 从不会引发 KeyError。
以下是一个由 tuple 组成的列表 coworkers,列出了每个人就读过的学校:
coworkers = [('Rolf', 'MIT'), ('Jen', 'Oxford'), ('Rolf', 'Cambridge'), ('Charlie', 'Manchester')]
现在要得到一个dictionary:
{
'Rolf': ['MIT', 'Cmbridge'],
'Jen': ['Oxford'],
'Charlie': ['Manchester']
}
一般的写法:
coworkers = [('Rolf', 'MIT'), ('Jen', 'Oxford'), ('Rolf', 'Cambridge'), ('Charlie', 'Manchester')]
alma_maters = {} # (alma mater:母校)
for coworker in coworkers:
if coworker[0] not in alma_maters:
alma_maters[coworker[0]] = []
alma_maters[coworker[0]].append(coworker[1])
或者:
coworkers = [('Rolf', 'MIT'), ('Jen', 'Oxford'), ('Rolf', 'Cambridge'), ('Charlie', 'Manchester')]
alma_maters = {} # (alma mater:母校)
for coworker, place in coworkers:
if coworker not in alma_maters:
alma_maters[coworker] = [] # default value
alma_maters[coworker].append(place)
print(alma_maters)
改为使用 defaultdict :
from collections import defaultdict
coworkers = [('Rolf', 'MIT'), ('Jen', 'Oxford'), ('Rolf', 'Cambridge'), ('Charlie', 'Manchester')]
# 如果词典中的某一个key不存在,则调用参数里的function
# 这里 function 是 list,即调用list,得到一个空的列表 []
alma_maters = defaultdict(list)
for coworker, place in coworkers:
alma_maters[coworker].append(place)
# 如果希望在访问不存在的 key 时,能引发异常, 则添加下面的一行
# alma_maters.default_factory = None
# (None 改成 int 时生成 0 值)
print(alma_maters['Rolf']) # ['MIT', 'Cambridge']
print(alma_maters['Jen']) # ['Oxford']
print(alma_maters['Charlie']) # ['Manchester']
print(alma_maters['Anne']) # []
from collections import defaultdict
my_company = 'Teclado'
coworkers = ['Jen', 'Li', 'Charlie', 'Rhys']
other_coworkers = [('Rolf', 'Apple Inc.'), ('Anna', 'Google')]
# 不能直接写 my_company, 因为 defaultdict 接受函数为参数
# lambda: my_company 返回 my_company
coworker_companies = defaultdict(lambda: my_company)
for person, company in other_coworkers:
coworker_companies[person] = company
# coworkers[1] 是 'Li', 输出默认值 Teclado
print(coworker_companies[coworkers[1]])
# other_coworkers[0][0] 是 'Rolf', 输出 Apple Inc.
print(coworker_companies[other_coworkers[0][0]])
OrderedDict这里是 Pascal Case
顾名思义,OrderedDict 是有序词典,是指键值对的顺序按插入顺序排序。
from collections import OrderedDict
o = OrderedDict()
o['Rolf'] = 6
o['Jose'] = 10
o['Jen'] = 3
# keys are always in the order in which they were inserted
# OrderedDict([('Rolf', 6), ('Jose', 10), ('Jen', 3)])
print(o)
o.move_to_end('Rolf') # 移到末尾
# OrderedDict([('Jose', 10), ('Jen', 3), ('Rolf', 6)])
print(o)
o.move_to_end('Rolf', last = False) # 移到反向的末尾,即开头
# OrderedDict([('Rolf', 6), ('Jose', 10), ('Jen', 3)])
print(o)
o.popitem()
# OrderedDict([('Rolf', 6), ('Jose', 10)])
print(o)
o.popitem(False) : 删除开头的元素
但从 Python 3.7 开始,dictionary 已经按插入排序,所以 OrderedDict 用处不是特别大。
Are dictionaries ordered in Python 3.6+?
namedtuplenamedtuple: 给 tuple 以及 tuple 中的每一个元素都取名字
如下的代码,account[0],account[1] 分别指的什么不是显而易见:
account = ('checking', 1850.90)
print(account[0]) # name
print(account[1]) # balance
使用 namedtuple:
from collections import namedtuple
account = ('checking', 1850.90)
# 第1个参数是 tuple 名称,和定义名称相同
# 第2个参数是 fields 名称
Account = namedtuple("Account", ['name', 'balance'])
accountNamedTuple_1 = Account('checking', 1850.90)
print(accountNamedTuple_1.name, accountNamedTuple_1.balance) # checking 1850.9
accountNamedTuple_2 = Account._make(account)
account_name_2, account_balance_2 = accountNamedTuple_2
print(account_name_2, account_balance_2) # checking 1850.9
accountNamedTuple_3 = Account(*account)
account_name_3, account_balance_3 = accountNamedTuple_3
print(account_name_3, account_balance_3) # checking 1850.9
print(accountNamedTuple_1._asdict()['balance']) # 1850.9
print(accountNamedTuple_2._asdict()['balance']) # 1850.9
print(accountNamedTuple_3._asdict()['balance']) # 1850.9
从 csv 文件或者 database 读取数据时,使用 namedtuple 可使代码更容易理解。
dequedeque:double ended queue 双端队列,使用deque而非 list 的原因首先是deque效率高,其次它保证线程安全 (thread safe),deque 所有的操作都是线程安全的 ,因此在使用 thread 时可使用 deque。
from collections import deque
friends = deque(('Rolf', 'Charlie', 'Jen', 'Anna'))
friends.append('Jose')
friends.appendleft('Anthony')
print(friends) # deque(['Anthony', 'Rolf', 'Charlie', 'Jen', 'Anna', 'Jose'])
friends.pop()
print(friends) # deque(['Anthony', 'Rolf', 'Charlie', 'Jen', 'Anna'])
friends.popleft()
print(friends) # deque(['Rolf', 'Charlie', 'Jen', 'Anna'])