目录
介绍:索引(index)是帮助MySQ高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引
优势:
- 提高数据检索的效率,降低数据库的IO成本
- 通过索引列对数据进行排序,降低数据排序的成本,降低CPN的消耗。
劣势:
- 索引列也是要占用空间的。
- 索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATE、DELETE时,效率降低。
MySQL的索引是在存储引擎层实现的,不同的存储引警有不同的结构,主要包含以下几种:
我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。
2.1 BTree
介绍:多路平衡查找树
以一颗最大度数(max-degree)为5(5阶)的BTree为例(每个节点最多存储4个key,5个指针):
知识小贴士: 树的度数指的是一个节点的子节点个数。
2.2 B+Tree
以一颗最大度数(max-degree)为4(4阶)的B+Tree为例:
相对于BTree区别:
- 所有的数据都会出现在叶子节点
- 叶子节点形成一个单向链表
MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能。
2.3 Hash
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
Hash索引特点
- Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,<,…)
- 无法利用索引完成排序操作
- 查询效率高,通常只需要一次检索就可以了,效率通常要高于B+Tree索引
存储引擎支持
- 在MySQL中,支持hash索引的是Memory引擎,而InnoD8中具有自适应hash功能,hash索引是存储引擎根据B+Tree索引在指定条件下自动构建的。
为什么InnoDB存储引擎选择使用B+ Tree索引结构?
- 相对于二叉树,层级更少,搜索效率高
- 对于BTree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低
- 相对Hash索引,B+Tree支持范围匹配及排序操作
在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:
聚集索引选取规则:
- 如果存在主键,主键索引就是聚集索引。
- 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
- 如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。
4.1 创建索引
CREATE [UNIQUE|FULLTEXT] INDEX index_name ON table_name (index_col_name,...)4.2 查看索引
SHOW INDEX FROM table_name;4.3 删除索引
DROP INDEX index_name ON table_name;案例:
表数据:
需求:
1、name字段为姓名字段,该字段的值可能会重复,为该字段创建索引。
CREATE INDEX idx_user_name ON tb_user(name)2、phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。
CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone)3、为profession、age、status创建联合索引。
CREATE INDEX idx_user_pro_age_sta ON tb_user(profession,age,status)4、为email建立合适的索引来提升查询效率
CREATE INDEX idx_user_email ON tb_user(email)
5.1 SQL执行频率
MySQL 客户端连接成功后,通过 show[sessionlglobal status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:
SHOW GLOBAL STATUS LIKE 'Com____';
5.2 慢查询日志
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。
MySQL的慢查询日志默认没有开启,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:
查看慢查询日志是否开启
SHOW VARIABLES LIKE 'slow_query_log'开启慢查询日志
SET GLOBAL slow_query_log='ON'关闭慢查询日志
SET GLOBAL slow_query_log='OFF'5.3 profile详情
show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling参数,能够看到当前MySQL是否支持
profile操作:
SELECT @@have_profiling默认profiling是关闭的,可以通过set语句在session/global级别开启profiling:
SET PROFILING=1执行一系列的业务SQL的操作,然后通过如下指令查看指令的执行耗时:
-- 查看每一条SOL的耗时基本情况 show profiles; -- 查看指定query id的SQL语句各个阶段的耗时情况 show profile for query query id; -- 查看指定query id的SQL语句CPU的使用情况 show profile cpu for query query id;5.4 explain执行计划
EXPLAIN 或者 DESC命令获取 MVSOL如何执行 SELECT语句的信息,包括在 SELECT 语句执行过程中表如何连接和连接的顺序。
-- 直接在select语句之前加上关键字 explain/desc EXPLAIN SELECT字段列表 FROM 表名 WHERE 条件;
EXPLAIN 执行计划各字段含义:
1、id
select查询的序列号,表示查询中执行select子句或者是操作表的顺序(id相同,执行顺序从上到下;id不同,值越大,越先执行)。
2、select_type
表示 SELECT的类型,常见的取值有SIMPLE(简单表,即不使用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION 中的第二个或者后面的查询语句)、SUBOUERY(SELECT/WHERE之后包含了子查询)等
3、type
表示连接类型,性能由好到差的连接类型为NULL、system、const、eg ref、ref、range、index、all
4、possible_key
显示可能应用在这张表上的索引,一个或多个
5、Key
实际使用的索引,如果为NULL,则没有使用索引
6、Key_len
表示索引中使用的字节数,该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下,长度越短越好
7、rows
MySQL认为必须要执行查询的行数,在innodb引擎的表中,是一个估计值,可能并不总是准确的
8、filtered
表示返回结果的行数占需读取行数的百分比,filtered 的值越大越好
6.1 验证索引效率
在未建立索引之前,执行如下SQL语句,查看SQL的耗时。
SELECT * FROM tb_sku WHERE sn='100000003145001'针对字段创建索引
create index idx_sku_sn on tb_sku(sn)然后再次执行相同的SQL语句,再次查看SQL的耗时。
SELECT * FROM tb_sku WHERE sn='100000003145001'6.2 最左前缀法则
如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。
如果跳跃某一列,索引将部分失效(后面的字段索引失效)
explain select * from tb_user where profession ='软件工程' and age = 31 and status ='0' explain select * from tb_user where profession ='软件工程' and age = 31 explain select * from tb_user where profession='软件工程' explain select * from tb_user where age = 31 and status = '0' explain select * from tb_user where status = '0'6.3 索引失效情况
1、不要在索引列上进行运算操作,索引将失效。
-- 例如使用substring进行截取 explain select * from tb_user where substring(phone,10,2) = '15'2、字符串类型字段使用时,不加引号,穿索引将失效。
explain select * from tb_user where profession ='软件工程' and age = 31 and status = 0; explain select * from tb_user where phone = 17799990015;3、如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。
explain select * from tb_user where profession like '软件%'; explain select * from tb_user where profession like '%工程'; explain select * from tb_user where profession like '%工%';4、用or分割开的条件,如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。
explain select * from tb_user where id = 10 or age = 23; explain select * from tb_user where phone = '17799990017' or age = 23; -- 由于age没有索引,所以即使id、phone有索引,索引也会失效。所以需要针对于age也要建立索引。5、如果MySQL评估使用索引比全表更慢,则不使用索引。
6.4 SQL提示
SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
1、use index 给MySQL指定一个索引,但是MySQL会根据实际条件判断是否采用
explain select * from tb_user use index(idx_user_pro) where profession = '软件工程”;2、ignore index 忽略索引
explain select * from tb_user ignore index(idx_user_pro) where profession = '软件工程”;3、force index 强制MySQL使用指定的索引
explain select * from tb_user force index(idx_user_pro) where profession = '软件工程”;6.5 覆盖索引&连表查询
尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到),减少select*。
explain select id, profession from tb_user where profession ='软件工程' and age = 31 and status ='0'; explain select id,profession,age, status from tb_user where profession ="软件工程' and age = 31 and status = '0'; explain select id,profession,age, status, name from tb_user where profession = '软件工程' and age = 31 and status = '0'; explain select * from tb_user where profession ='软件工程' and age = 31 and status = '0';usingindex condition:查找使用了索引,但是需要回表查询数据
using where; usingindex:查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询数据
6.6 前缀索引
当字段类型为字符串(varchar,text等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘!0,影响查询效率。此时可以只将字符串的>-部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
1、创建前缀索引
create index idx_xxx on table_name(column(n));2、前缀长度
可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
select count(distinct email)/count(*) from tb_user; select count(distinct substring(email,1,5)) / count(*) from tb_user;6.7 单列&联合索引
单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。
1、单列索引情况:
explain select id, phone, name from tb_user where phone = '17799990010'and name = '张三'多条件联合查询时,MSQL优化器会评估哪个字段的索引效率更高,会选择该索引完成本次查询。
2、联合索引情况:
- 针对于数据量较大(百万条以上数据),且查询比较频繁的表建立索引。
- 针对于常作为查询条件(where)、排序(orderby)、分组(groupby)操作的字段建立索引。
- 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
- 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
- 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
- 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率,
- 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。