
康奈尔大学对最大的大模型项目(如研究时的 Chat GPT-3)的能源使用情况进行了评估,结果表明,这些项目需要大量的能源——相当于大约 200 名德国普通人的年消耗量。
对环境的影响并不显著。以下是Earth.org 详细介绍的几个例子。
然而,尽管面临挑战,人工智能仍为环境保护和气候行动提供了创新途径。据 NPR 报道,人工智能在减缓气候变化的努力中得到越来越多地应用。
人工智能在环境领域的应用实际上有望减少全球温室气体排放。北美和欧洲在这方面处于领先地位。到 2030 年,它们的排放量预计将分别下降 6.1% 和 4.9%。
将人工智能用于可持续环境应用还可以促进就业和经济增长。得益于人工智能驱动的环境工作,东亚的劳动力在 2030 年可能会增长 2.5% ,新增约 2510 万个职位。欧洲有望从人工智能可持续性应用中获得最大的经济利益,到 2030 年,其 GDP 可能会增长 5.4%。
然而,关键问题是人工智能对环境的影响缺乏透明度,人工智能系统的复杂性掩盖了它们的生态足迹。解决方案在于开发节能的人工智能硬件和算法,同时促进透明和问责的文化。道德的人工智能设计标准和精确的政府法规对于可持续的人工智能发展至关重要。
人工智能在任何领域都是一把双刃剑,但在涉及世界和平(或缺乏和平)时,它的影响似乎尤为明显。
人工智能可用于制造或加剧冲突。参见自主致命无人机、网络战、深度伪造(例如 2022 年乌克兰总统泽连斯基投降的深度伪造视频)、虚假信息、自动监视或人工智能增强的宣传。然而,它也可以作为维和工具。
在这里,AI 能力扩展到:
大规模数字对话:联合国政治与建设和平事务部 (UN DPPA) 在也门和利比亚利用人工智能辅助数字对话来促进和平进程的包容性。人工智能工具促进了当地方言和语言的大规模磋商,并允许根据人口统计兴趣进行实时分析和细分。
大规模暴力事件的预警:人工智能可以分析网络上的虚假信息、仇恨言论和宣传模式,以识别大规模暴力事件的预警信号并采取有针对性的干预措施。
监测违反停火行为:使用人工智能的非武器化自主无人机已被用于监测接触线和违反停火行为。这项技术有助于减少对维和人员和地面部队的伤害。人工智能有助于处理无人机和卫星图像收集的大量数据,这对于监测停火、观察裁军和识别战争罪行至关重要。
ParagogerAI训练营 2img.ai
目前处于试点阶段的新兴人工智能趋势之一是使用复杂的决策算法。我们可能会在 2024 年及以后看到这些算法得到更广泛的采用。
根据诺基亚思想领导力杂志最近的一篇文章,“高效决策支持算法”正在成为应对复杂决策场景的变革性工具。这些由机器学习驱动的人工智能系统可以研究各种潜在选项,并根据指定标准将其缩小到更易于管理的候选名单。
人工智能用于决策和解决问题的例子不胜枚举,而且应用范围正在迅速扩大。以下是一些值得注意的应用:
针对人工智能公司的诉讼增多,特别是在生成人工智能领域,是近年来出现的一个重要趋势。
法学教授詹姆斯·格里梅尔曼 (James Grimmelmann) 预测,2024 年将成为人工智能相关诉讼的关键一年,这可能会对生成式人工智能开发者产生财务影响。
来自多个来源的数据和专家见解揭示了这一不断变化的法律格局:
与生成式人工智能相关的诉讼数量明显增加,这些诉讼涉及隐私、消费者安全和知识产权保护等问题。这些诉讼的法律依据各不相同,包括版权侵权、侵犯隐私等。
人们担心将版权法应用于人工智能可能会扼杀人工智能的发展和创造,从而可能形成一个有利于资金充足的公司的体系。
将版权法应用于人工智能的法律努力和日益增长的诉讼趋势可能会导致人工智能开发和使用方式的转变,诉讼结果可能会创下新的先例。

随着 2024 年美国总统大选的临近,人们越来越担心人工智能对民主进程的潜在影响。
人工智能驱动的虚假信息和深度伪造的兴起引起了专家的警惕,他们担心这可能会操纵选举并削弱公众对选举的信任。
为了让您了解人工智能如何在竞选、选民定位和选举管理中发挥重要作用,我总结了布伦南司法中心举办的一次讨论会,专家们在会上探讨了有关人工智能的关键问题。(完整讨论可在此处查看。如果您想了解有关特定主题的更多信息,我已添加时间戳)。

社会工程学是一种心理操纵技术,利用人为错误或弱点来获取私人信息、访问权或贵重物品。不幸的是,随着人工智能的兴起,这种做法变得更加容易和普遍。
使用人工智能的公司最关心的是保护他们的数据免受黑客攻击。斯坦福大学调查的公司中,超过一半(51%)表示他们正在采取措施预防网络安全风险。难怪人工智能在网络安全领域的价值预计到2027 年将增至 463 亿美元(而 2020 年为 100 多亿美元)。
人工智能网络犯罪是一座巨大的冰山,鱼叉式网络钓鱼(使用个性化电子邮件或消息诱骗受害者点击恶意链接或打开受感染附件的网络钓鱼攻击)、鱼叉式网络钓鱼(一种针对高层管理人员或其他高价值个人的鱼叉式网络钓鱼攻击)、虚拟绑架(诈骗者使用社交媒体声称他们绑架了亲人并索要赎金)或BEC(商业电子邮件诈骗:诈骗者假装来自您信任的公司以让您汇款)只是冰山一角。
未来几年,社会工程威胁将更加严重。根据Trend MicroSecurity 的 2024 年预测报告,到 2024 年,语音克隆将成为针对性诈骗的主要手段。

全球行为治疗市场预计将经历惊人的增长,到 2032 年将达到 3088 亿美元,2023 年至 2032 年的复合年增长率 (CAGR) 将达到 8.1%。
数字技术和平台正越来越多地被采用,成为市场机遇之一。在这里,人工智能有潜力解决心理健康专业人员的巨大缺口。然而,它也有一些局限性。
根据英国心理咨询与心理治疗协会和《今日心理学》的文章,以下是人工智能正在产生影响的一些关键领域:
人工智能通过先进的虚拟助手和陪伴机器人承担起传统上由朋友或家人承担的角色,这种趋势正在日益增长。这些人工智能实体旨在进行有意义的对话并表现出同理心行为,它们正在成为许多人的陪伴来源,尤其是那些正在经历社交孤立的人。
社交机器人 ElliQ 和 Paro 等已被开发用于陪伴,尤其是老年人。美国国立卫生研究院的一项研究报告称,社交机器人可以减轻老年人的孤独感,展现出它们作为陪伴者的潜力。这些人工智能机器人可以交谈、提醒用户服药并提供情感支持。
也许最有趣的是,有些情况下,个人会对人工智能实体产生浪漫的感觉。人们对人工智能(如 Replika AI)产生浪漫感觉的例子,可以在游戏或互动平台中的虚拟角色中看到。媒体甚至报道过现实生活中个人与人工智能实体或机器人建立浪漫关系的案例。例如,中国一名男子“娶”了他自己制造的机器人。

来源:Google Trends ParagogerAI训练营 2img.ai
随着人工智能影响者的出现,影响者营销格局正在迅速发生变化,这一趋势得到以下事实的强调:目前,超过 52% 的美国人口在 Instagram 上关注网络创作者。
AI 网红有几个好处:他们效率高,能够持续在线而无需休息,而且他们的内容由数据洞察驱动,确保与观众的需求保持一致。
然而,它们也有缺点。由于人工智能网红无法真正“感受”或“体验”生活,他们与特定受众群体建立深刻、共情联系的能力有限。此外,人工智能网红还存在信任挑战,因为他们可能被视为不近人情或不真诚,尤其是老一辈人。
人工智能影响者的例子包括:

中国在人工智能 (AI) 领域的崛起是技术演进和战略增长的一个显著例子。Statista 在其《2023 年人工智能:深入市场分析》中将其列为七大关键人工智能预测之一。
中国的人工智能市场规模在 2021 年约为 1500 亿元人民币(231.96 亿美元),预计到 2025 年将达到 4000 亿元人民币(618.55 亿美元)。中国的人工智能之旅始于 1970 年代后以科技为重点的经济改革。
中国最初落后于西方国家,但自 2006 年以来,中国已系统地制定了国家人工智能议程,该议程分为三个阶段(2020 年、2025 年和 2030 年为基准),目标是到 2030 年成为全球人工智能领导者,并将其人工智能产业价值提升至 1 万亿元人民币以上。
这一战略的核心是政府与百度、腾讯、阿里巴巴、商汤科技和科大讯飞等主要公司的合作,这些公司各自在面部识别、软件/硬件和语音智能等专业人工智能领域处于领先地位。这一快速发展对社会经济、军事和政治产生了深远影响,重塑了农业、交通运输和制造业等行业。
然而,这种增长也带来了挑战,包括潜在的劳动力市场中断、道德困境和隐私问题,需要谨慎的引导和监管。

人工智能情感智能 (AEI) 将情感工程、人机交互和情感计算的精髓融入 AI 系统,使机器能够识别、解读和响应人类情感。这是一个快速发展的领域,预计2023 年至 2030 年全球人工智能情感智能市场将增长 21.5%。
在实践中,AEI 涉及情绪识别、生成和增强,其应用多种多样且影响深远。
这些应用凸显了 AEI 在创建新商业生态系统方面的潜力,同时也强调了基础设施和道德考虑的必要性。

毫不奇怪,我们将看到人工智能驱动的软件和硬件的增长。同样不足为奇的是,增长将有多么巨大。
AI软件:到2025年,AI软件的销售额预计将大幅增长。北美将拥有最大的市场份额和最快的增长,到2025年销售额将增加到500亿美元以上,其次是亚太地区和欧洲。
人工智能硬件:未来几年人工智能硬件的销量将猛增,到2025 年收入预计将跃升至 2350 亿美元。
预计人工智能硬件市场中最大的部分将由中央处理器(CPU)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)和片上系统(SoC)加速器等产品组成。
预计到 2025 年,这一类别的价值将达到约 1710 亿美元。以下细分市场包括图形处理单元(GPU;545.2 亿美元)、存储设备(63.5 亿美元)和网络产品(25.4 亿美元)。

自动驾驶实验室 (SDLabs) 结合人工智能和机器人技术,实现科学实验过程的自动化。
与 LLM(大型语言模型)相比,SDLab 针对小数据集输入进行了效率优化,并且不需要花费大量算法训练和微调的费用。
为什么 SDLabs 的概念具有革命性?它们可以执行各种任务,从设计和执行实验到分析数据和做出预测:
SDLabs 的开发仍处于早期阶段,但该技术有可能改变我们的科学研究方式,具体在两个领域:药物发现(更快、更有效地开发新的个性化药物和疗法)和化学品(SDLabs 可用于设计和合成具有所需特性的新材料)。
随着 2024 年的到来,我们可以期待见证人工智能领域更多突破性的创新。这些趋势将继续改变行业、改善我们的生活并重塑未来。人工智能应用不断给我们带来惊喜,我迫不及待地想看看这项非凡技术的下一章将如何发展。ParagogerAI训练营 2img.ai