目录
- 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
这周主要是使用VGG16模型,完成明星照片识别。
- from keras.utils import losses_utils
- from tensorflow import keras
- from keras import layers, models
- import os, PIL, pathlib
- import matplotlib.pyplot as plt
- import tensorflow as tf
- import numpy as np
- from keras.callbacks import ModelCheckpoint, EarlyStopping
-
- gpus = tf.config.list_physical_devices("GPU")
-
- if gpus:
- gpu0 = gpus[0] # 如果有多个GPU,仅使用第0个GPU
- tf.config.experimental.set_memory_growth(gpu0, True) # 设置GPU显存用量按需使用
- tf.config.set_visible_devices([gpu0], "GPU")
-
- # 导入数据
- data_dir = "/Users/MsLiang/Documents/mySelf_project/pythonProject_pytorch/learn_demo/P_model/p06_vgg16/data"
- data_dir = pathlib.Path(data_dir)
-
- # 查看数据
- image_count = len(list(data_dir.glob('*/*.jpg')))
- print("图片总数为:",image_count) # 1800
-
- roses = list(data_dir.glob('Jennifer Lawrence/*.jpg'))
- img = PIL.Image.open(str(roses[0]))
- # img.show() # 查看图片
-
- # 数据预处理
- # 1、加载数据
- batch_size = 32
- img_height = 224
- img_width = 224
-
- print('data_dir======>',data_dir)
- """
- 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
- """
- train_ds = tf.keras.preprocessing.image_dataset_from_directory(
- data_dir,
- validation_split=0.1,
- subset="training",
- label_mode="categorical",
- seed=123,
- image_size=(img_height, img_width),
- batch_size=batch_size)
-
- """
- 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
- """
- val_ds = tf.keras.preprocessing.image_dataset_from_directory(
- data_dir,
- validation_split=0.1,
- subset="validation",
- label_mode="categorical",
- seed=123,
- image_size=(img_height, img_width),
- batch_size=batch_size)
-
- class_names = train_ds.class_names
- print(class_names)
-
- # 可视化数据
- plt.figure(figsize=(20, 10))
-
- for images, labels in train_ds.take(1):
- for i in range(20):
- ax = plt.subplot(5, 10, i + 1)
- plt.imshow(images[i].numpy().astype("uint8"))
- plt.title(class_names[np.argmax(labels[i])])
- plt.axis("off")
- plt.show()
-
- # 再次检查数据
- for image_batch, labels_batch in train_ds:
- print(image_batch.shape) # (32, 224, 224, 3)
- print(labels_batch.shape) # (32, 17)
- break
-
- # 配置数据集
- AUTOTUNE = tf.data.AUTOTUNE
-
- train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
- val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
-
- # 构建CNN网络
- """
- 关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995
- layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
- 关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
- """
-
- model = models.Sequential([
- keras.layers.experimental.preprocessing.Rescaling(1. / 255, input_shape=(img_height, img_width, 3)),
-
- layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3
- layers.AveragePooling2D((2, 2)), # 池化层1,2*2采样
- layers.Conv2D(32, (3, 3), activation='relu'), # 卷积层2,卷积核3*3
- layers.AveragePooling2D((2, 2)), # 池化层2,2*2采样
- layers.Dropout(0.5),
- layers.Conv2D(64, (3, 3), activation='relu'), # 卷积层3,卷积核3*3
- layers.AveragePooling2D((2, 2)),
- layers.Dropout(0.5),
- layers.Conv2D(128, (3, 3), activation='relu'), # 卷积层3,卷积核3*3
- layers.Dropout(0.5),
-
- layers.Flatten(), # Flatten层,连接卷积层与全连接层
- layers.Dense(128, activation='relu'), # 全连接层,特征进一步提取
- layers.Dense(len(class_names)) # 输出层,输出预期结果
- ])
-
- # model.summary() # 打印网络结构
-
-
- # 训练模型
- # 1、设置动态学习率
- # 设置初始学习率
- initial_learning_rate = 1e-4
-
- lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
- initial_learning_rate,
- decay_steps=60, # 敲黑板!!!这里是指 steps,不是指epochs
- decay_rate=0.96, # lr经过一次衰减就会变成 decay_rate*lr
- staircase=True)
-
- # 将指数衰减学习率送入优化器
- optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
-
- model.compile(optimizer=optimizer,
- loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
- metrics=['accuracy'])
-
-
- # 损失函数
- # 调用方式1:
- model.compile(optimizer="adam",
- loss='categorical_crossentropy',
- metrics=['accuracy'])
-
- # 调用方式2:
- # model.compile(optimizer="adam",
- # loss=tf.keras.losses.CategoricalCrossentropy(),
- # metrics=['accuracy'])
-
- # sparse_categorical_crossentropy(稀疏性多分类的对数损失函数)
- # 调用方式1:
- model.compile(optimizer="adam",
- loss='categorical_crossentropy',
- metrics=['accuracy'])
- # ↑↑↑↑这里出现报错,需要将 sparse_categorical_crossentropy 改成→ categorical_crossentropy↑↑
- # 调用方式2:
- # model.compile(optimizer="adam",
- # loss=tf.keras.losses.SparseCategoricalCrossentropy(),
- # metrics=['accuracy'])
-
- # 函数原型
- tf.keras.losses.SparseCategoricalCrossentropy(
- from_logits=False,
- reduction=losses_utils.ReductionV2.AUTO,
- name='sparse_categorical_crossentropy'
- )
-
-
-
- epochs = 100
-
- # 保存最佳模型参数
- checkpointer = ModelCheckpoint('best_model.h5',
- monitor='val_accuracy',
- verbose=1,
- save_best_only=True,
- save_weights_only=True)
-
- # 设置早停
- earlystopper = EarlyStopping(monitor='val_accuracy',
- min_delta=0.001,
- patience=20,
- verbose=1)
-
- # 网络模型训练
- history = model.fit(train_ds,
- validation_data=val_ds,
- epochs=epochs,
- callbacks=[checkpointer, earlystopper])
-
- # 模型评估
- acc = history.history['accuracy']
- val_acc = history.history['val_accuracy']
-
- loss = history.history['loss']
- val_loss = history.history['val_loss']
-
- epochs_range = range(len(loss))
-
- plt.figure(figsize=(12, 4))
- plt.subplot(1, 2, 1)
- plt.plot(epochs_range, acc, label='Training Accuracy')
- plt.plot(epochs_range, val_acc, label='Validation Accuracy')
- plt.legend(loc='lower right')
- plt.title('Training and Validation Accuracy')
-
- plt.subplot(1, 2, 2)
- plt.plot(epochs_range, loss, label='Training Loss')
- plt.plot(epochs_range, val_loss, label='Validation Loss')
- plt.legend(loc='upper right')
- plt.title('Training and Validation Loss')
- plt.show()
-
-
- # 指定图片进行预测
- # 加载效果最好的模型权重
- model.load_weights('best_model.h5')
-
- from PIL import Image
- import numpy as np
-
- img = Image.open("/Users/MsLiang/Documents/mySelf_project/pythonProject_pytorch/learn_demo/P_model/p06_vgg16/data/Jennifer Lawrence/003_963a3627.jpg") #这里选择你需要预测的图片
- image = tf.image.resize(img, [img_height, img_width])
-
- img_array = tf.expand_dims(image, 0)
-
- predictions = model.predict(img_array) # 这里选用你已经训练好的模型
- print("预测结果为:",class_names[np.argmax(predictions)])
-
-
-
-
【查看图片】

【模型运行过程---第21epoch就早停了】

【训练精度、损失-----显然结果很很差】

① 在运行代码的时候遇到报错:
错误:Graph execution error: Detected at node 'sparse_categorical_crossentropy/SparseSoftmaxCrossEntropyWithLogits/SparseSoftmaxCrossEntropyWithLogits' defined at (most recent call last):
出现这个问题来自我们使用的损失函数。
- model.compile(optimizer="adam",
- loss='sparse_categorical_crossentropy',
- metrics=['accuracy'])
解决办法:
将损失函数里面的loss='sparse_categorical_crossentropy' 改成 'categorical_crossentropy',即可解决报错问题。
关于sparse_categorical_crossentropy和categorical_crossentropy的更多细节,详细参考这篇博文:交叉熵损失_多分类交叉熵损失函数-CSDN博客
原始模型,跑出来效果很差很差!!!
(1)将原来的Adam优化器换成SGD优化器,效果如下:

(2)后续再补充,最近在写结课论文,有些忙。