码农知识堂 - 1000bd
  •   Python
  •   PHP
  •   JS/TS
  •   JAVA
  •   C/C++
  •   C#
  •   GO
  •   Kotlin
  •   Swift
  • 博客摘录「 YOLOv5模型剪枝压缩」2024年5月11日


    添加L1正则来约束BN层系数

    The semantic edge information can improve the performance of salient object detection. Specifically, semantic edge information enhances performance in the following aspects:

    1. Clear edge structure: By embedding edge prior knowledge into the network, ENFNet better maintains the boundary clarity of salient objects. Traditional fully convolutional networks (FCNs) tend to blur spatial structures and edges due to successive strides and pooling operations, whereas ENFNet effectively embeds edge information into hierarchical feature maps through edge guidance blocks.

    2. Precise saliency region localization: Edge guidance blocks not only perform feature operations but also spatial transformations to achieve effective edge embedding. This helps in more accurately locating the boundaries of salient objects in saliency detection.

    3. High-quality saliency map generation: ENFNet generates saliency maps with high-quality boundary awareness, thanks to the network's layered embedding of detailed edge information.

    4. Performance improvement: ENFNet achieves best-in-class performance across all datasets compared to existing state-of-the-art methods, indicating that edge information is effective in improving the accuracy of saliency detection.

    5. Boundary preservation: By using IoU boundary loss, ENFNet further optimizes the accuracy of saliency boundaries. This loss function calculates the difference between the true boundary and the predicted boundary, aiding in the generation of saliency maps with clear boundaries.

    6. Multi-scale feature fusion: Through a hierarchical edge-guided non-local structure, ENFNet combines local contrast features and global context features, enhancing its ability to detect salient objects.

    BSDS500 轮廓检测与语义分割数据集_数据集-阿里云天池

    【免费】BDCNWEIGHTS资源-CSDN文库

    Learning Spatial Context: Using Stuff to Find Things (stanford.edu)

    阅读了三篇关于基于深度学习的边缘检测的综述论文,发现了12篇关于更流行的算法的论文。整理了模型架构和指标信息。

    After reading three review papers on deep learning-based edge detection, I discovered 12 papers on more popular algorithms. I have organized the model structures and metric information.

  • 相关阅读:
    机械工程基础知识点汇总
    一文了解Linux上TCP的几个内核参数调优
    经典网络解析(二)Vgg | 块的设计思想,代码,小卷积核
    【FPGA教程案例60】深度学习案例7——基于FPGA的CNN卷积神经网络之testbench编写以及CNN仿真测试
    Delta模拟器:iOS上的复古游戏天堂
    共同富裕-三大维度-各省份、城市、农村基尼系数-附带多种计算方法
    Matlab:整数
    (最简单,详细,直接上手)uniapp/vue中英文多语言切换
    ubuntu20.04.3中qt程序界面嵌套另一个qt界面
    LCR表测电容怎么实现连续测试?ATECLOUD云测试平台帮您解决
  • 原文地址:https://blog.csdn.net/Qingyou__/article/details/138697678
  • 最新文章
  • 攻防演习之三天拿下官网站群
    数据安全治理学习——前期安全规划和安全管理体系建设
    企业安全 | 企业内一次钓鱼演练准备过程
    内网渗透测试 | Kerberos协议及其部分攻击手法
    0day的产生 | 不懂代码的"代码审计"
    安装scrcpy-client模块av模块异常,环境问题解决方案
    leetcode hot100【LeetCode 279. 完全平方数】java实现
    OpenWrt下安装Mosquitto
    AnatoMask论文汇总
    【AI日记】24.11.01 LangChain、openai api和github copilot
  • 热门文章
  • 十款代码表白小特效 一个比一个浪漫 赶紧收藏起来吧!!!
    奉劝各位学弟学妹们,该打造你的技术影响力了!
    五年了,我在 CSDN 的两个一百万。
    Java俄罗斯方块,老程序员花了一个周末,连接中学年代!
    面试官都震惊,你这网络基础可以啊!
    你真的会用百度吗?我不信 — 那些不为人知的搜索引擎语法
    心情不好的时候,用 Python 画棵樱花树送给自己吧
    通宵一晚做出来的一款类似CS的第一人称射击游戏Demo!原来做游戏也不是很难,连憨憨学妹都学会了!
    13 万字 C 语言从入门到精通保姆级教程2021 年版
    10行代码集2000张美女图,Python爬虫120例,再上征途
Copyright © 2022 侵权请联系2656653265@qq.com    京ICP备2022015340号-1
正则表达式工具 cron表达式工具 密码生成工具

京公网安备 11010502049817号