• 数据可视化(七):Pandas香港酒店数据高级分析,涉及相关系数,协方差,数据离散化,透视表等精美可视化展示


    Tips:"分享是快乐的源泉💧,在我的博客里,不仅有知识的海洋🌊,还有满满的正能量加持💪,快来和我一起分享这份快乐吧😊!

    喜欢我的博客的话,记得点个红心❤️和小关小注哦!您的支持是我创作的动力!数据源存放在我的资源下载区啦!

    数据可视化(七):Pandas香港酒店数据高级分析,涉及相关系数,协方差,数据离散化,透视表等精美可视化展示

    目录

    一、基本数据处理:读取“香港酒店数据”,按要求解决以下问题。

    assets/香港酒店数据

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] # SimHei.ttf
    plt.rcParams['axes.unicode_minus'] = False 
    
    import warnings
    warnings.filterwarnings('ignore')
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    df = pd.read_excel('香港酒店数据.xlsx', index_col=0)
    df.head()
    
    • 1
    • 2

    1. 按照数据的内容,重新设置数据的索引,重新设置列名称为’名字’,‘类型’,‘城市’,‘地区’,‘地点’,‘评分’,‘评分人数’,‘价格’。

    # 现将索引为NAN这一行给删除掉
    df = df.iloc[1:,:]
    df.head()
    
    df.reset_index(drop=True,inplace=True)
    df.head()
    
    df.columns = ["名字","类型","城市","地区","地点","评分","评分人数","价格"]
    df.head()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    2. 查看所有类型为“商务出行”的酒店。

    df.query("类型=='商务出行'").reset_index(drop=True)
    
    • 1

    3. 查看所有类型为“浪漫情侣”,地区在湾仔的酒店。

    df.query("类型 == '浪漫情侣' & 地区 == '湾仔'").reset_index(drop=True)
    
    • 1

    4. 查看所有地址在观塘或者油尖旺,评分大于4的酒店。

    df.query("地区 == '观塘'| 地区 == '油尖旺'").loc[df["评分"] > 4].reset_index(drop=True)
    
    • 1

    5. 查看类型缺失的数据。

    df[df['类型'].isnull()].reset_index(drop=True)
    
    • 1

    6. 用“其他”填充类型和地区。

    df["类型"].fillna("其他",inplace=True)
    df["地区"].fillna("其他",inplace=True)
    df[df["类型"]=="其他"]
    
    • 1
    • 2
    • 3

    7. 用评分均值填充缺失值。

    # 计算评分均值
    score_mean = round( df["评分"].mean(), 1)
    score_mean
    
    df["评分"].fillna(score_mean,inplace=True)
    df.iloc[411]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    8. 删除价格和评分人数的缺失值。

    df.dropna(subset=['价格', '评分人数'], inplace=True)
    # 显示清理后的DataFrame的前五行  
    df.head()
    
    • 1
    • 2
    • 3

    9. 保存到“酒店数据1.xlsx”

    df = df.reset_index(drop=True)
    df.to_excel(fr"../data/酒店数据1.xlsx",index=False)
    
    • 1
    • 2

    二、复杂数据处理:读取上一题的“酒店数据1.xlsx”数据,按要求解决以下问题。

    1. 读取数据。读取上一题目保存的“酒店数据1.xlsx”。

    df = pd.read_excel(fr"../data/酒店数据1.xlsx")
    df.head()
    
    • 1
    • 2

    2. 查看“评分”的格式,并分别进行升序和降序排序。

    df["评分"].dtype
    
    # 升序排序
    df_r =  df.sort_values(by="评分",ascending=True).reset_index(drop=True)
    df_r.head()
    
    # 降序排序
    df_d =  df.sort_values(by="评分",ascending=False).reset_index(drop=True)
    df_d.head()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    3. 对酒店按照价格进行排名,计算“油尖旺”地区的均价。

    df.dtypes
    
    # 筛选出位于“油尖旺”地区的酒店  
    oil_jian_wang_hotels = df[df['地区'] == '油尖旺']  
    # 计算“油尖旺”地区的酒店均价  
    average_price_oil_jian_wang = oil_jian_wang_hotels['价格'].mean()  
    average_price_oil_jian_wang
    
    sorted_hotels = df.sort_values(by='价格', ascending=False).reset_index(drop=True)  
    
    # 显示排序后的酒店列表(例如,显示前10名)  
    print("按价格降序排序的酒店:")  
    sorted_hotels[['名字', '价格']].head(10)
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    4. 对酒店数据进行描述性统计,并求所有价格的均值方差,最大最小值,中值。

    df.info()
    
    df.describe()
    
    • 1
    • 2
    • 3

    5. 计算评分和价格之间的的相关系数,协方差。

    # 计算评分和价格之间的相关系数  
    correlation = df['评分'].corr(df['价格'])  
    print(f"评分和价格之间的相关系数为:{correlation:.4f}") 
    
    # 计算评分和价格之间的协方差  
    covariance = df['评分'].cov(df['价格'])  
    print(f"评分和价格之间的协方差为:{covariance:.2f}")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    6. 按照评分降序排序,评分相同时按价格升序排序。

    df.sort_values(by=["评分","价格"],ascending=[False,True]).reset_index(drop=True)
    
    • 1

    7. 计算评分小于3分的酒店数量和占比。

    df.query("评分 < 3")["名字"].count()
    
    df.query("评分 < 3")["名字"].count() / df["名字"].count()
    
    • 1
    • 2
    • 3

    8. 计算酒店评分大于等于4分的酒店的价格均值。

    df.query("评分 > 4")["价格"].mean()
    
    • 1

    9. 计算出每个地区的酒店占总酒店数量的比例。

    df.groupby(by="地区")["名字"].count() / df["名字"].count()
    
    • 1

    10. 找出酒店评分人数排名前20的酒店,并计算他们的价格均值。

    df_20 = df.sort_values(by="评分",ascending = False).reset_index(drop=True).head()
    df_20
    
    df_20["价格"].mean()
    
    • 1
    • 2
    • 3
    • 4

    11. 查看酒店分布的类型数量和地区数量,并统计各个类型和地区包含的酒店数量。

    # 类型数量
    df["类型"].unique().size
    
    # 地区
    df["地区"].unique().size
    
    df.groupby(by="类型")["名字"].count()
    
    df.groupby(by="地区")["名字"].count()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    12. 用数据透视表,计算每个类型的酒店的评分人数总数量。

    # 使用pivot_table计算每个类型的酒店的评分人数总数量  
    pivot_table = df.pivot_table(index='类型', values='评分', aggfunc='count')  
      
    # 重命名列名以使其更具描述性  
    pivot_table.columns = ['评分人数']  
      
    # 显示数据透视表  
    pivot_table
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    13. 用数据透视表,计算每个类型的酒店价格的均值和标准差。

    # 计算每个类型的酒店价格的均值  
    mean_pivot = df.pivot_table(index='类型', values='价格', aggfunc='mean')  
    mean_pivot.columns = ['均值']  # 重命名列名为'均值'  
    mean_pivot
    
    # 计算每个类型的酒店价格的标准差  
    # 标准差是需要两个数据点,一个数据点就会计算不出来
    
    std_pivot = df.pivot_table(index='类型', values='价格', aggfunc='std')  
    std_pivot.columns = ['标准差']  # 重命名列名为'标准差'  
    std_pivot
    
    # 将均值和标准差合并到一个DataFrame中  
    result = mean_pivot.join(std_pivot)  
    result
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    14. 用数据透视表,计算每个地区酒店价格和评分的最大值和最小值。

    # 使用pivot_table计算每个地区的酒店价格和评分的最大值和最小值  
    pivot_table = df.pivot_table(  
        index='地区',   
        values=['价格', '评分'],   
        aggfunc={'价格': ['max', 'min'], '评分': ['max', 'min']}  
    )  
      
    pivot_table
    
    # 重命名列名,使其更具可读性  
    pivot_table.columns = [('_'.join(col)).replace('价格_max', '价格最大值').replace('价格_min', '价格最小值')  
                                 .replace('评分_max', '评分最大值').replace('评分_min', '评分最小值')  
                             for col in pivot_table.columns]  
      
    pivot_table
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    15. 用数据透视表,计算每个地区和类型的酒店的评分的均值和标准差。

    # 使用pivot_table计算每个地区和类型的酒店的评分均值和标准差  
    pivot_table = df.pivot_table(  
        index=['地区', '类型'],   
        values='评分',   
        aggfunc={'评分': ['mean', 'std']}  
    )  
      
    pivot_table
    
    # 重命名列名,使其更具可读性  
    pivot_table.columns = [('_'.join(col)).replace('评分_mean', '评分均值').replace('评分_std', '评分标准差') for col in pivot_table.columns]  
      
    # 如果需要,可以将多级索引转换为普通索引  
    pivot_table.reset_index(inplace=True)  
      
    pivot_table
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    16. 将“类型”和“名字”设置为层次化索引,并交换索引的位置。然后将层次化索引取消。

    # 设置层次化索引,先按“类型”再按“名字”  
    df_hierarchical = df.set_index(['类型', '名字'])  
    df_hierarchical
    
    # 交换索引的位置,先按“名字”再按“类型”  
    df_swapped = df_hierarchical.swaplevel(0, 1)  
    df_swapped
    
    # 取消层次化索引,将其转换为普通列  
    df_reset = df_swapped.reset_index()  
    df_reset
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    17. 将数据集转置,获取转置后的index和columns。

    # 数据集转置
    df.T.head()
    
    # 获取index
    df.T.index
    
    # 获取columns
    df.T.columns
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    18. 用Groupby方法来计算每个地区的评分人数的总和以及均值。

    df.groupby(by="地区")["评分人数"].agg(["sum","mean"])
    
    • 1

    19. 用Grouby方法计算每个类型的平均价格,最高价和最低价。

    df.groupby(by="类型")["价格"].agg(["max","min"])
    
    • 1

    20. 数据离散化,按照价格将酒店分为3个等级,0-500为C,500-1000为B,大于1000为A,列名设置为“价格等级”。

    # 定义一个lambda函数来根据价格确定价格等级  
    def price_to_grade(price):  
        if price <= 500:  
            return 'C'  
        elif 500 < price <= 1000:  
            return 'B'  
        else:  
            return 'A'  
      
    # 使用apply函数将lambda函数应用于'价格'列,并将结果存储在新的列'价格等级'中  
    df['价格等级'] = df['价格'].apply(price_to_grade)  
      
    # 打印结果  
    df
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    21. 获取评分均值最高和最低的地区的数据,分别使用append和concat方法将获取的两个数据集合并。

    # 计算每个地区的评分均值  
    mean_scores = df.groupby('地区')['评分'].mean().reset_index()  
    mean_scores
    
    # 找出评分均值最高和最低的地区  
    max_score_area = mean_scores.loc[mean_scores['评分'].idxmax()]  
    min_score_area = mean_scores.loc[mean_scores['评分'].idxmin()]  
      
    # 提取评分均值最高和最低地区的数据  
    max_score_data = df[df['地区'] == max_score_area['地区']]  
    min_score_data = df[df['地区'] == min_score_area['地区']]  
      
    # 使用append方法合并数据集  
    combined_with_append = max_score_data.append(min_score_data, ignore_index=True)  
      
    # 使用concat方法合并数据集(需要先创建列表)  
    combined_list = [max_score_data, min_score_data]  
    combined_with_concat = pd.concat(combined_list, ignore_index=True)  
      
    # 打印结果  
    print("使用append方法合并的数据集:")  
    display(combined_with_append)  
    print("\n使用concat方法合并的数据集:")  
    display(combined_with_concat)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    22. 数据离散化,按照评分人数将酒店平均分为3个等级,三个等级的酒店数量尽量保持一致。评分人数最多的为A,最少的为C。列名设置为“热门等级”。

    # 使用qcut函数将数据分为3个等级,尽量保持每个等级数量一致  
    # 这里的3表示分为3个等级,duplicates='drop'确保没有重复的边界值  
    df['热门等级'] = pd.qcut(df['评分人数'], 3, labels=['C', 'B', 'A'], duplicates='drop')  
      
    # 打印结果  
    df.head()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    23. 选出评分人数为A,价格也为A的酒店数据,计算其平均评分。

    # 筛选数据
    df_select = df.query("热门等级 == 'A' & 价格等级 == 'A'")
    
    # 计算均值
    df_reset["评分"].mean()
    
    • 1
    • 2
    • 3
    • 4
    • 5

    24. 取价格最高的5个酒店的数据,使用stack和unstack方法实现dataframe和Series之间的转换。

    df_top5 = df.sort_values(by="价格",ascending = False).reset_index(drop=True).head()
    df_top5
    
    df_top5.stack()
    
    df_top5.unstack()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    25. 纵向拆分数据集,分为df1和df2,df1包含名字,类型,城市,地区,df2包含名字,地点,评分,评分人数,价格,价格等级,热门等级。

    df1 = df[["名字","类型","城市","地区"]]
    df1.head()
    
    df2 = df[["名字","地点","评分","评分人数","价格","价格等级","热门等级"]]
    df2.head()
    
    • 1
    • 2
    • 3
    • 4
    • 5

    26. 将df2按照价格进行排序,重新设置df2的索引。索引值等于价格排名。

    df2.sort_values(by="价格",ascending=False).reset_index(drop=True)
    
    • 1

    27. 使用merge方法将df1和df2合并。

    df3 = df1.merge(df2,on="名字")
    df3.head()
    
    • 1
    • 2

    28. 将合并后的数据集保存数据到“酒店数据2.xlsx”。

    df3 = df3.reset_index(drop=True)
    df3.to_excel(fr"../data/酒店数据2.xlsx",index=False)
    
    • 1
    • 2

    三、数据可视化:完成以下可视化问题。

    1. 画出 𝑦=𝑥^2+2𝑥+1在区间[-5,3]的函数图像。

    import matplotlib.pyplot as plt  
    import numpy as np  
      
    # 创建一个x值数组,范围从-5到3,包含50个点  
    x = np.linspace(-5, 3, 50)  
      
    # 计算对应的y值  
    y = x**2 + 2*x + 1  
      
    # 创建一个新的图形  
    plt.figure()  
      
    # 画出函数图像  
    plt.plot(x, y)  
      
    # 设置x轴和y轴的标签  
    plt.xlabel('x')  
    plt.ylabel('y')  
      
    # 设置图形的标题  
    plt.title('y = x^2 + 2x + 1')  
      
    # 显示图形  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    2. 在同一张图中创建两个子图,分别画出 s i n ( x ) sin(x) sin(x) c o s ( x ) cos(x) cos(x)在[-3.14,3.14]上的函数图像。设置线条宽度为2.5。

    import matplotlib.pyplot as plt  
    import numpy as np  
      
    # 定义x值的范围  
    x = np.linspace(-3.14, 3.14, 100)  
      
    # 计算对应的sin和cos值  
    sin_y = np.sin(x)  
    cos_y = np.cos(x)  
      
    # 创建子图,1行2列,第1个子图  
    fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(10, 5))  
      
    # 在第1个子图上画sin(x)  
    axs[0].plot(x, sin_y, lw=2.5)  # lw=2.5设置线条宽度  
    axs[0].set_title('sin(x)')  
    axs[0].set_xlabel('x')  
    axs[0].set_ylabel('y')  
    axs[0].grid(True)  # 可选:添加网格  
      
    # 在第2个子图上画cos(x)  
    axs[1].plot(x, cos_y, lw=2.5)  # lw=2.5设置线条宽度  
    axs[1].set_title('cos(x)')  
    axs[1].set_xlabel('x')  
    axs[1].set_ylabel('y')  
    axs[1].grid(True)  # 可选:添加网格  
      
    # 调整子图之间的间距  
    plt.tight_layout()  
      
    # 显示图形  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    3. 读取保存的“酒店数据2”数据,画出每个地区酒店数量的柱状图,柱状颜色为红色。

    df = pd.read_excel(fr"../data/酒店数据2.xlsx")
    df.head()
    
    # 计算每个地区的酒店数量  
    hotel_counts = df['地区'].value_counts()  
      
    # 设置图像大小  
    plt.figure(figsize=(12, 6))  # 你可以根据需要调整宽度和高度  
      
    # 绘制柱状图,设置柱状颜色为红色  
    plt.bar(hotel_counts.index, hotel_counts.values, color='red')  
      
    # 旋转x轴标签45度,使得标签之间有足够的空间  
    plt.xticks(rotation=45, ha='right')  
      
    # 设置图表标题和坐标轴标签  
    plt.title('每个地区酒店数量')  
    plt.xlabel('地区')  
    plt.ylabel('酒店数量')  
      
    # 显示图表  
    plt.tight_layout()  # 调整子图参数,使之填充整个图像区域  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    4. 画出每个价格等级酒店数量的柱状图。

    # 计算每个地区的酒店数量  
    hotel_counts = df['价格等级'].value_counts()  
      
    # 设置图像大小  
    plt.figure(figsize=(10, 6))  # 你可以根据需要调整宽度和高度  
      
    # 绘制柱状图,设置柱状颜色为红色  
    plt.bar(hotel_counts.index, hotel_counts.values, color='m')  
      
    # 设置图表标题和坐标轴标签  
    plt.title('每个价格等级酒店数量')  
    plt.xlabel('价格等级')  
    plt.ylabel('酒店数量')  
      
    # 显示图表  
    plt.tight_layout()  # 调整子图参数,使之填充整个图像区域  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    5. 画出各个价格等级占比的饼图。

    # 计算每个价格等级的酒店数量  
    hotel_counts_by_price_level = df['价格等级'].value_counts()  
      
    # 计算总酒店数量  
    total_hotels = hotel_counts_by_price_level.sum()  
      
    # 计算每个价格等级的占比  
    price_level_percentages = (hotel_counts_by_price_level / total_hotels) * 100  
      
    # 设置图像大小  
    plt.figure(figsize=(8, 6))  
      
    # 绘制饼图  
    plt.pie(price_level_percentages, labels=hotel_counts_by_price_level.index, autopct='%1.1f%%', startangle=90)  
      
    # 设置图表标题  
    plt.title('各个价格等级酒店占比')  
      
    # 确保饼图是圆的,而不是椭圆的  
    plt.axis('equal')  
      
    # 显示图表  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    6. 画出酒店评分的直方图。

    # 确保评分字段存在且没有缺失值  
    df['评分'] = pd.to_numeric(df['评分'], errors='coerce')  # 将评分字段转换为数值类型,并处理无法转换的值  
    df = df.dropna(subset=['评分'])  # 删除评分字段为缺失值的行  
      
    # 绘制评分的直方图  
    plt.figure(figsize=(10, 6))  # 设置图像大小  
    plt.hist(df['评分'], bins=20, edgecolor='black', alpha=0.7)  # bins参数决定了直方图的条形数量  
      
    # 设置图表标题和坐标轴标签  
    plt.title('酒店评分直方图')  
    plt.xlabel('评分')  
    plt.ylabel('频数')  
      
    # 显示图表  
    plt.grid(axis='y', alpha=0.75)  # 添加网格线  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    7. 画出每个热门等级酒店评分均值的柱状图。(按照评分均值从小到大排序。)

    # 计算每个热门等级酒店的评分均值  
    mean_scores_by_hot_level = df.groupby('热门等级')['评分'].mean()  
      
    # 按照评分均值从小到大排序  
    sorted_mean_scores = mean_scores_by_hot_level.sort_values(ascending=True)  
      
    # 设置图像大小  
    plt.figure(figsize=(10, 6))  
      
    # 绘制柱状图  
    plt.bar(sorted_mean_scores.index, sorted_mean_scores.values, color='DodgerBlue')  
      
    # 设置图表标题和坐标轴标签  
    plt.title('每个热门等级酒店评分均值')  
    plt.xlabel('热门等级')  
    plt.ylabel('评分均值')  
      
    # 显示数值标签  
    for index, value in enumerate(sorted_mean_scores.values):  
        plt.text(index, value, f'{value:.2f}', ha='center', va='bottom')  
      
    # 显示图表  
    plt.tight_layout()  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    8. 画出油尖旺地区,评分的箱线图。

    # 筛选出油尖旺地区的酒店数据  
    oil_pier_hotels = df[df['地区'] == '油尖旺']  
    
    # 计算评分的统计量:最小值、第一四分位数、中位数、第三四分位数、最大值  
    stats = oil_pier_hotels['评分'].describe([0.25, 0.75])  # 0.25和0.75分别对应第一四分位数和第三四分位数  
      
    # 绘制箱线图  
    plt.boxplot(oil_pier_hotels['评分'], patch_artist=True, labels=['油尖旺地区评分'])  
      
    # 设置图表标题  
    plt.title('油尖旺地区酒店评分箱线图')  
      
    # 显示图表  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    9. 选出平均价格前5的地区,画出这些地区的评分的箱线图。

    from matplotlib.patches import Patch  
    
    # 计算每个地区的平均价格  
    avg_prices_by_area = df.groupby('地区')['价格'].mean()  
      
    # 按照平均价格从高到低排序,并选择前5个地区  
    top_5_areas = avg_prices_by_area.nlargest(5).index  
      
    # 初始化一个空列表来存储代理艺术家  
    proxies = []  
      
    # 绘制这些地区的评分箱线图  
    plt.figure(figsize=(10, 8))  
      
    # 对每个地区绘制箱线图  
    for i, area in enumerate(top_5_areas):  
        area_data = df[df['地区'] == area]  
        plt.boxplot(area_data['评分'].values, positions=[i], patch_artist=True)  
        proxies.append(Patch(color=plt.gca().artists[i].get_facecolor(), label=area))  
    
    # 设置图表标题和坐标轴标签  
    plt.title('平均价格前5地区的酒店评分箱线图')  
    plt.xlabel('地区')  
    plt.ylabel('评分')  
    plt.xticks(range(len(top_5_areas)), top_5_areas)  # 设置x轴刻度标签  
      
    # 添加图例  
    plt.legend(handles=proxies, loc='best')  
      
    # 显示图表  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31

    10. 将前面两个题目的图像(箱线图)旋转90度。

    # 筛选出油尖旺地区的酒店数据  
    oil_pier_hotels = df[df['地区'] == '油尖旺']  
    
    # 计算评分的统计量:最小值、第一四分位数、中位数、第三四分位数、最大值  
    stats = oil_pier_hotels['评分'].describe([0.25, 0.75])  # 0.25和0.75分别对应第一四分位数和第三四分位数  
      
    # 绘制水平箱线图  
    plt.boxplot(oil_pier_hotels['评分'], vert=False, patch_artist=True, labels=[" "])  
      
    # 设置图表标题  
    plt.title('油尖旺地区酒店评分水平箱线图')  
      
    # 显示y轴标签  
    plt.xlabel('评分')  
      
    # 显示图表  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    # 计算每个地区的平均价格  
    avg_prices_by_area = df.groupby('地区')['价格'].mean()  
      
    # 按照平均价格从高到低排序,并选择前5个地区  
    top_5_areas = avg_prices_by_area.nlargest(5).index  
      
    # 初始化一个空列表来存储代理艺术家  
    proxies = []  
      
    # 绘制这些地区的评分箱线图  
    plt.figure(figsize=(10, 5))  # 调整图形大小以适应水平箱线图  
    positions = range(1, len(top_5_areas) + 1)  # 设置箱线图的位置  
    boxprops = dict(linestyle='-', linewidth=2, color='blue')  # 设置箱体属性  
      
    # 初始化一个空列表来存储每个地区的标签和颜色  
    labels_and_colors = []  
      
    for i, area in enumerate(top_5_areas):  
        area_data = df[df['地区'] == area]  
        bp = plt.boxplot(area_data['评分'].values, vert=False, positions=[positions[i]], patch_artist=True, boxprops=boxprops)  
          
        # 获取箱体的颜色,并添加到labels_and_colors列表中  
        color = bp['boxes'][0].get_facecolor()  
        labels_and_colors.append((area, color))  
    
    # 设置图表标题和坐标轴标签  
    plt.title('平均价格前5地区的酒店评分水平箱线图')  
    plt.xlabel('评分')  
    plt.ylabel('地区')  
    plt.yticks(positions, top_5_areas)  
      
    # 创建Patch对象,用于图例  
    patches = [Patch(color=color, label=label) for label, color in labels_and_colors]  
      
    # 添加图例  
    plt.legend(handles=patches, loc='upper left')  
      
    # 显示图表  
    plt.grid(False)  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    11. 绘制一个评分,评分人数和价格之间的相关系数图

    import seaborn as sns
    # 计算相关系数矩阵  
    corr_matrix = df[['评分', '评分人数', '价格']].corr()  
      
    # 绘制热图  
    plt.figure(figsize=(8, 6))  
    sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt=".2f")  
      
    # 设置图表标题和坐标轴标签  
    plt.title('评分、评分人数和价格之间的相关系数图')  
    plt.xlabel('特征')  
    plt.ylabel('特征')  
      
    # 显示图表  
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

  • 相关阅读:
    过拟合、欠拟合、泛化误差、训练误差
    Day813.什么时候需要分表分库 -Java 性能调优实战
    java.net.UnknownHostException: eureka
    代码随想录1刷—二叉树篇(一)
    最长的斐波那契子序列的长度
    java自定义Excel导出实现方案汇总
    ONLYOFFICE 8.1版本桌面编辑器测评
    (Research)结直肠癌与肝转移之间的免疫表型联系
    C++题解(6) 信息学奥赛一本通:2069:【例2.12 】糖果游戏
    分布式锁redisson
  • 原文地址:https://blog.csdn.net/m0_60732994/article/details/138049044