• 激光雷达与rgb相机外参标定


    1 简介

    最近在做livox与rgb相机的外参标定,网上看了很多开源方法大对数是基于ros做的,由于对ros不太熟悉,所以先基于python写一个初始版本,以下是全部代码,后面有有时间再整理,相机的内参是使用matlab工具箱标定的,大致思路是将标定板的点云数据通过左右、上下的坐标替换,深度值转换为灰度值,进而得到灰度图,对灰度图做传统图像处理,找到圆心,然后再逆转回在激光雷达坐标系上的坐标。

    2 代码

    import pandas as pd
    import pcl
    import open3d as o3d
    import numpy as np
    import cv2 as cv
    
    import warnings
    
    import xml
    
    from sympy import false
    warnings.filterwarnings("ignore")
    
    rgb_mtx = np.array([[164.9671, 0., 334.1256,
                        0., 167.1601, 219.2284,
                        0., 0., 1.]]).reshape((3, 3))
    
    rgb_dist = np.array([-0.0844, 0.0065, -2.2149e-04, -1.1157e-04, 2.8005e-04]).reshape((1, 5))
    
    # rgb_mtx = np.array([[120, 0., 640,
    #                      0., 120, 360,
    #                      0., 0., 1.]]).reshape((3, 3))
    
    # rgb_dist = np.zeros((5, 1), dtype=np.float64) 
    
    def find_lidar_blobs(input_img, show=False):
        input_img = 255 - input_img
        params = cv.SimpleBlobDetector_Params()
        params.minThreshold = 5
        # params.maxThreshold = 5
        params.blobColor = 0
        # Filter by Area.
        params.filterByArea = True
        params.minArea = 400
        params.maxArea = 21000
        # Filter by Circularity
        params.filterByCircularity = True
        params.minCircularity = 0.1
        # Filter by Convexity
        params.filterByConvexity = True
        params.minConvexity = 0.87
        # Filter by Inertia
        params.filterByInertia = True
        params.minInertiaRatio = 0.1
        detector = cv.SimpleBlobDetector_create(params)
        # keypoints是一个列表,其中的每个元素都是一个cv2.KeyPoint
        # KeyPoint包含两个属性 圆的直径以及圆心的位置
        keypoints = detector.detect(input_img)
        # keypoints = [kp for kp in keypoints if 72 <= kp.size <= 88]
        img_with_keypoints = cv.drawKeypoints(input_img, keypoints, np.array([]), (0,255,0), cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
        # size_list = [kp.size for kp in keypoints]
        if show:
            cv.namedWindow("Keypoints", 0)
            cv.imshow('Keypoints', img_with_keypoints)
            cv.waitKey(0)
            cv.destroyAllWindows()
    
    
        return keypoints
    
    def filter_raw_pcl(data_path, color_change):
        ori_pcl_data = pd.read_csv(data_path, low_memory=False)
        x_condition = (ori_pcl_data['X'] > 0.6) & (ori_pcl_data['X'] <2)  #纵向
        y_condition = (ori_pcl_data['Y'] > -0.6) & (ori_pcl_data['Y'] < 0.5) #横向
        z_condition = (ori_pcl_data['Z'] > 0.3) & (ori_pcl_data['Z'] < 3) #高度
        ref_condition =  (ori_pcl_data['Reflectivity'] > 0) & (ori_pcl_data['Reflectivity'] < 15)
        # ref_condition =  (ori_pcl_data['Reflectivity'] > 10)
        filtered_data = ori_pcl_data[x_condition & y_condition & z_condition & ref_condition]
        # filtered_data = ori_pcl_data[x_condition & y_condition & z_condition]
        if color_change:
            min = filtered_data['Reflectivity'].min()
            max = filtered_data['Reflectivity'].max()
            filtered_data['reflectance_normalized'] = (filtered_data['Reflectivity'] - min) / (max - min)
        return filtered_data
    
    def show_pcl(data):
        point_cloud = o3d.geometry.PointCloud()
        # 根据数据类型显示
        if isinstance(data, pd.DataFrame):
            point_cloud.points = o3d.utility.Vector3dVector(data[['X', 'Y', 'Z']].values)
        else:
            point_cloud.points = o3d.utility.Vector3dVector(data)
        o3d.visualization.draw_geometries([point_cloud])
    
    def sac_plane(valid_data_df):
        valid_data = valid_data_df[['X', 'Y', 'Z']].values.astype('float32')
        cloud = pcl.PointCloud(valid_data)
    
        seg = cloud.make_segmenter()
        seg.set_optimize_coefficients(True)
        seg.set_model_type(pcl.SACMODEL_PLANE)
        seg.set_method_type(pcl.SAC_RANSAC)
        seg.set_distance_threshold(0.01)
    
        inliners, coefficients = seg.segment()
    
        guess = np.expand_dims(np.array(coefficients), axis=1)
        res = np.dot(valid_data, guess[:3, :]) + guess[3, 0]
        
        plane_cloud = cloud.extract(inliners, negative=False)
        plane_cloud_arr = plane_cloud.to_array()
    
    
        return plane_cloud_arr, coefficients
    
    def projecto2D(filter_data):
        projected_points = filter_data*1000
        x_min, x_max = projected_points[:, 0].min(), projected_points[:, 0].max()  
        z_min, z_max = projected_points[:, 2].min(), projected_points[:, 2].max()  
        y_min, y_max = projected_points[:, 1].min(), projected_points[:, 1].max()
        x_range = x_max -x_min
        
        # 创建RGB图像  
        image_width = int(y_max - y_min)  
        image_height = int(z_max - z_min)  
        # TODO 当前是用int8保存深度值 后面使用float16格式
        rgb_image = np.zeros((image_height, image_width, 1), dtype=np.uint8)
        # 映射颜色到RGB图像  
        for point in projected_points:  
            y, z = int(y_max -point[1]), int(z_max - point[2])
            if 0 <= y < image_width and 0 <= z < image_height:  
                rgb_image[z, y] = int(255*(point[0]- x_min)/x_range)
        cv.imwrite("demo.jpg", rgb_image)
        return[x_min, x_range, y_max, z_max], rgb_image
        
    
    def cal_rgbd(img_path, xyz, show=False):
        if isinstance(img_path, str):
            ori_img = cv.imread(img_path, cv.IMREAD_UNCHANGED)
        else:
            ori_img = img_path
        img_show = cv.cvtColor(ori_img, cv.COLOR_GRAY2BGR)
        # 图片二值化
        ret, smoothed_img = cv.threshold(ori_img, 15, 255, cv.THRESH_BINARY)
        kernel = np.ones((5,5),np.uint8)
        smoothed_img = cv.dilate(smoothed_img,kernel,iterations = 1)
        if show:
            cv.namedWindow('threshold', 0)
            cv.imshow("threshold", smoothed_img)
            key = 0
            while True:
                key = cv.waitKey()
                if key == 27:
                    break
        # 高斯滤波
        smoothed_img = cv.GaussianBlur(smoothed_img, (5, 5), 0)
        keypoints = find_lidar_blobs(smoothed_img, show= show)
        gridcell_list  = []
        for keypoint in keypoints:
            x, z = int(keypoint.pt[0]), int(keypoint.pt[1])
            valid_point_num = 0
            value_sum  = 0
            for i in range(10):
                for j in range(10):
                    # 加入距离筛选
                    # TODO 现在深度值有问题 深度值从左到右递减
                    if(ori_img[z+j, x+i]) > 30:
                        valid_point_num += 1
                        value_sum += ori_img[z+j, x+i]
            if valid_point_num == 0:
                continue
            mean_value = value_sum / valid_point_num
            # 还原为之前的深度值 
            mean_value_trans = mean_value*xyz[1]/255 + xyz[0]
            # print("mean_value_trans", mean_value_trans)
            if isinstance(mean_value_trans, np.ndarray):
                mean_value_trans = mean_value_trans.item()
        # return[x_min, x_range, y_max, z_max], rgb_image
            x_trans= xyz[2] - x
            z_trans = xyz[3] -z
            if z_trans > 400: #在纵向上加入高度筛选
                gridcell_list.append([mean_value_trans,x_trans,z_trans])
                cv.circle(img_show,(x, z), 1, (0, 0, 255))
        if show:
            cv.namedWindow("img_show", 0)
            cv.imshow('img_show', img_show)
            key = 0
            while True:
                key = cv.waitKey()
                if key == 27:
                    break
        return np.array(gridcell_list, dtype=np.float64)
    
    def add_world_point(circle_dist=8,boardh=12, boardw=4):
        world_points = []
        for i in range(boardh):
            for j in range(boardw):        
                if i%2 == 0:
                    x = circle_dist * (2 * j)
                else:
                    x = circle_dist * (2 * j + 1)
                y = circle_dist * i
                world_points.append([x, y, 0])
        return np.array(world_points, dtype=np.float32)
    
    def find_rgb_blobs(input_img, show=False):
        params = cv.SimpleBlobDetector_Params()
        params.minThreshold = 5
        # params.maxThreshold = 5
        # params.blobColor = 0
        # Filter by Area.
        params.filterByArea = True
        params.minArea = 20
        params.maxArea = 500
        # Filter by Circularity
        params.filterByCircularity = True
        params.minCircularity = 0.1
        # Filter by Convexity
        params.filterByConvexity = True
        params.minConvexity = 0.87
        # Filter by Inertia
        params.filterByInertia = True
        params.minInertiaRatio = 0.1
        detector = cv.SimpleBlobDetector_create(params)
        keypoints = detector.detect(input_img)
        img_with_keypoints = cv.drawKeypoints(input_img, keypoints, np.array([]), (0,255,0), cv.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
        # size_list = [kp.size for kp in keypoints]
        if show:
            cv.namedWindow("Keypoints", 0)
            cv.imshow('Keypoints', img_with_keypoints)
            cv.waitKey(0)
            cv.destroyAllWindows()
        return keypoints
    
    def cal_rgb(rgb_img_path, show=False):
        rgb_cell_list = []
        rgb_img = cv.imread(rgb_img_path)
        
        gray = cv.cvtColor(rgb_img,cv.COLOR_BGR2GRAY)
        
        rgb_img[0:100, :] = 0
        rgb_img[:, 0:250] = 0
        rgb_img[250:480, :] = 0
        rgb_img[:, 400:] = 0
        keypoints = find_rgb_blobs(rgb_img, show=show)
        for keypoint in keypoints:
            x, y = int(keypoint.pt[0]), int(keypoint.pt[1])
            rgb_cell_list.append([x, y])
        rgb_cell_list  = np.array(rgb_cell_list)
        ori = np.copy(rgb_cell_list)
        # 当前的rgb已经严格按照从上到下,从左到右排列
        ori[:, 1] = np.round(ori[:, 1] / 8) * 8
        indices = np.lexsort((ori[:, 0], ori[:, 1]))
        rgb_cell_list = rgb_cell_list[indices]
        # word_points = add_world_point()
        # if show:
        #     i = 0
        #     for point in rgb_cell_list:
        #         cv.putText(rgb_img, "{}".format(i), (point[0], point[1]), cv.FONT_HERSHEY_TRIPLEX,thickness = 1,fontScale= 0.5,color=(0,255,0))
        #         i = i + 1
        #     cv.namedWindow("img_show_whole", 0)
        #     cv.imshow('img_show_whole', rgb_img)
        #     key = 0
        #     while True:
        #         key = cv.waitKey()
        #         if key == 27:
        #             break
        # rgb_cell_list = np.array(rgb_cell_list, dtype=np.float32).reshape(1, -1, 2)
        # word_points = np.array(word_points).reshape(1, -1, 3)
        # ret, mtx, dist, rvecs, tvecs = cv.calibrateCamera(word_points, rgb_cell_list, gray.shape[::-1], None, None)
        # if ret:
        #     print(mtx, dist)
        rgb_cell_list = rgb_cell_list.tolist()[:12]
        return np.array(rgb_cell_list, dtype=np.float64)
    
    def getRT(world_points,gridcell_list, mtx, dist):
        _, rvec, tvec = cv.solvePnP(world_points, 
                                gridcell_list, mtx, dist,cv.SOLVEPNP_ITERATIVE)
        rotation_m, _ = cv.Rodrigues(rvec)  # 罗德里格斯变换
        RT = np.transpose(rotation_m)
        shouldBeIdentity = np.dot(RT, rotation_m)
        I = np.identity(3, dtype=rotation_m.dtype)
        n = np.linalg.norm(I - shouldBeIdentity)
        assert (n < 1e-6)
        return rotation_m, tvec
    
    
    def main():
        show = True
        data_path = '~/cxx_project/lidar_rgb_calib/data/0221/2024-02-21_18-06-03.Csv'
        filter_data = filter_raw_pcl(data_path, False)
        # show_pcl(filter_data)
        calib_board, conf = sac_plane(filter_data)
        xyz, depth_img = projecto2D(calib_board)
        depth_cell_list = cal_rgbd(depth_img, xyz, show=show)
        depth_ori = np.copy(depth_cell_list)
        # # 当前的rgb已经严格按照从上到下,从左到右排列
        depth_ori[:, 2] = np.round(depth_ori[:, 2] / 60) * 60
        indices = np.lexsort((-depth_ori[:, 1], -depth_ori[:, 2]))
        depth_cell_list = depth_cell_list[indices]/1000
        # depth_cell_list = depth_cell_list[:, [0, 2, 1]]
        print("depth_cell_list:", depth_cell_list)
        rgb_img_path = '~/cxx_project/lidar_rgb_calib/data/0221/BIAODINGBAN/undistort_img/52.jpg'
        img = cv.imread(rgb_img_path)
        rgb_cell_list = cal_rgb(rgb_img_path, show=show)
        print("rgb_cell_list:", rgb_cell_list)
        R, T= getRT(depth_cell_list, rgb_cell_list, rgb_mtx, rgb_dist)
        print("R:{}, T{}".format(R, T))
        image_points, _ = cv.projectPoints(calib_board, R, T, rgb_mtx, rgb_dist)
        for point in image_points:
            x, y = point[0]
            cv.circle(img, (int(x), int(y)), radius=1, color=(0, 255, 0), thickness=-1)
        # if show:
        cv.namedWindow("res", 0)
        cv.imshow('res', img)
        cv.waitKey(0)
        # cv.destroyAllWindows()
    
    
    if __name__ == "__main__":
        main()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
  • 相关阅读:
    自己动手实现 HashMap(Python字典),彻底系统的学习哈希表(上篇)——不看血亏!!!
    js解密日记3 jsentrypt带给我的困扰
    ZooKeeper启停脚本
    SpringBoot+百度地图+Mysql实现中国地图可视化
    GO学习笔记(3)
    【Myatis】mybatis的缓存机制
    ConcurrentDictionary<T,V> 的这两个操作不是原子性的
    TML转义字符:xss攻击与HTML字符的转义和反转义
    反序列化漏洞介绍
    c语言的数据结构:队列
  • 原文地址:https://blog.csdn.net/weilaicxy22/article/details/136234972