目录
原理查看:037、目标检测-算法速览-CSDN博客

类别预测的实现,锚框类别数num_classes+1背景:

该图层使用填充为1的3×3的卷积层。此卷积层的输入和输出的宽度和高度保持不变,只是改变了通道数:
- import torch
- import torchvision
- from torch import nn
- from torch.nn import functional as F
- from d2l import torch as d2l
-
-
- def cls_predictor(num_inputs, num_anchors, num_classes):
- return nn.Conv2d(num_inputs, num_anchors * (num_classes + 1),
- kernel_size=3, padding=1)
把边界框也看做一个预测问题,要预测的值就是两个坐标四个值,所以输出通道为4*num_anchors:
- def bbox_predictor(num_inputs, num_anchors):
- return nn.Conv2d(num_inputs, num_anchors * 4, kernel_size=3, padding=1)
单发多框检测使用多尺度特征图来生成锚框并预测其类别和偏移量。 在不同的尺度下,特征图的形状或以同一单元为中心的锚框的数量可能会有所不同。 因此,不同尺度下预测输出的形状可能会有所不同。
- def forward(x, block):
- return block(x)
-
- Y1 = forward(torch.zeros((2, 8, 20, 20)), cls_predictor(8, 5, 10))
- Y2 = forward(torch.zeros((2, 16, 10, 10)), cls_predictor(16, 3, 10))
- Y1.shape, Y2.shape
![]()
通道维包含中心相同的锚框的预测结果。我们首先将通道维移到最后一维。 因为不同尺度下批量大小仍保持不变,我们可以将预测结果转成二维的(批量大小,高×宽×通道数)的格式,以方便之后在维度1上的连结 :
- def flatten_pred(pred):
- return torch.flatten(pred.permute(0, 2, 3, 1), start_dim=1)
-
- def concat_preds(preds):
- return torch.cat([flatten_pred(p) for p in preds], dim=1)
为了在多个尺度下检测目标,我们在下面定义了高和宽减半块down_sample_blk,该模块将输入特征图的高度和宽度减半。
- def down_sample_blk(in_channels, out_channels):
- blk = []
- for _ in range(2):
- blk.append(nn.Conv2d(in_channels, out_channels,
- kernel_size=3, padding=1))
- blk.append(nn.BatchNorm2d(out_channels))
- blk.append(nn.ReLU())
- in_channels = out_channels
- blk.append(nn.MaxPool2d(2))
- return nn.Sequential(*blk)
跟当时VGG的实现极其类似,效果:
forward(torch.zeros((2, 3, 20, 20)), down_sample_blk(3, 10)).shape

基本网络块用于从输入图像中抽取特征。 为了计算简洁,我们构造了一个小的基础网络,该网络串联3个高和宽减半块,并逐步将通道数翻倍。 给定输入图像的形状为256×256,此基本网络块输出的特征图形状为32×32:
- def base_net():
- blk = []
- num_filters = [3, 16, 32, 64]
- for i in range(len(num_filters) - 1):
- blk.append(down_sample_blk(num_filters[i], num_filters[i+1]))
- return nn.Sequential(*blk)
-
- forward(torch.zeros((2, 3, 256, 256)), base_net()).shape
完整的单发多框检测模型由五个模块组成。每个块生成的特征图既用于生成锚框,又用于预测这些锚框的类别和偏移量。在这五个模块中,第一个是基本网络块,第二个到第四个是高和宽减半块,最后一个模块使用全局最大池化将高度和宽度都降到1。
- def get_blk(i):
- if i == 0:
- blk = base_net()
- elif i == 1:
- blk = down_sample_blk(64, 128)
- elif i == 4:
- blk = nn.AdaptiveMaxPool2d((1,1))
- else:
- blk = down_sample_blk(128, 128)
- return blk
每个块的前向传播:为每个块定义前向传播。与图像分类任务不同,此处的输出包括:CNN特征图Y;在当前尺度下根据Y生成的锚框;预测的这些锚框的类别和偏移量(基于Y):
- def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor):
- Y = blk(X)
- anchors = d2l.multibox_prior(Y, sizes=size, ratios=ratio)
- cls_preds = cls_predictor(Y)
- bbox_preds = bbox_predictor(Y)
- return (Y, anchors, cls_preds, bbox_preds)
一个较接近顶部的多尺度特征块是用于检测较大目标的,因此需要生成更大的锚框。 在上面的前向传播中,在每个多尺度特征块上,我们通过调用的multibox_prior函数的sizes参数传递两个比例值的列表。
- sizes = [[0.2, 0.272], [0.37, 0.447], [0.54, 0.619], [0.71, 0.79],
- [0.88, 0.961]]
- ratios = [[1, 2, 0.5]] * 5
- num_anchors = len(sizes[0]) + len(ratios[0]) - 1
汇总:
- class TinySSD(nn.Module):
- def __init__(self, num_classes, **kwargs):
- super(TinySSD, self).__init__(**kwargs)
- self.num_classes = num_classes
- idx_to_in_channels = [64, 128, 128, 128, 128]
- for i in range(5):
- # 即赋值语句self.blk_i=get_blk(i)
- setattr(self, f'blk_{i}', get_blk(i))
- setattr(self, f'cls_{i}', cls_predictor(idx_to_in_channels[i],
- num_anchors, num_classes))
- setattr(self, f'bbox_{i}', bbox_predictor(idx_to_in_channels[i],
- num_anchors))
-
- def forward(self, X):
- anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5
- for i in range(5):
- # getattr(self,'blk_%d'%i)即访问self.blk_i
- X, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(
- X, getattr(self, f'blk_{i}'), sizes[i], ratios[i],
- getattr(self, f'cls_{i}'), getattr(self, f'bbox_{i}'))
- anchors = torch.cat(anchors, dim=1)
- cls_preds = concat_preds(cls_preds)
- cls_preds = cls_preds.reshape(
- cls_preds.shape[0], -1, self.num_classes + 1)
- bbox_preds = concat_preds(bbox_preds)
- return anchors, cls_preds, bbox_preds
训练:
- batch_size = 32
- train_iter, _ = d2l.load_data_bananas(batch_size)
-
-
- device, net = d2l.try_gpu(), TinySSD(num_classes=1)
- trainer = torch.optim.SGD(net.parameters(), lr=0.2, weight_decay=5e-4)
-
- #损失函数和评价函数
- cls_loss = nn.CrossEntropyLoss(reduction='none')
- bbox_loss = nn.L1Loss(reduction='none')
-
- def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):
- batch_size, num_classes = cls_preds.shape[0], cls_preds.shape[2]
- cls = cls_loss(cls_preds.reshape(-1, num_classes),
- cls_labels.reshape(-1)).reshape(batch_size, -1).mean(dim=1)
- bbox = bbox_loss(bbox_preds * bbox_masks,
- bbox_labels * bbox_masks).mean(dim=1)
- return cls + bbox
-
- def cls_eval(cls_preds, cls_labels):
- # 由于类别预测结果放在最后一维,argmax需要指定最后一维。
- return float((cls_preds.argmax(dim=-1).type(
- cls_labels.dtype) == cls_labels).sum())
-
- def bbox_eval(bbox_preds, bbox_labels, bbox_masks):
- return float((torch.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())
-
-
-
-
-
- #训练
- num_epochs, timer = 20, d2l.Timer()
- animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
- legend=['class error', 'bbox mae'])
- net = net.to(device)
- for epoch in range(num_epochs):
- # 训练精确度的和,训练精确度的和中的示例数
- # 绝对误差的和,绝对误差的和中的示例数
- metric = d2l.Accumulator(4)
- net.train()
- for features, target in train_iter:
- timer.start()
- trainer.zero_grad()
- X, Y = features.to(device), target.to(device)
- # 生成多尺度的锚框,为每个锚框预测类别和偏移量
- anchors, cls_preds, bbox_preds = net(X)
- # 为每个锚框标注类别和偏移量
- bbox_labels, bbox_masks, cls_labels = d2l.multibox_target(anchors, Y)
- # 根据类别和偏移量的预测和标注值计算损失函数
- l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,
- bbox_masks)
- l.mean().backward()
- trainer.step()
- metric.add(cls_eval(cls_preds, cls_labels), cls_labels.numel(),
- bbox_eval(bbox_preds, bbox_labels, bbox_masks),
- bbox_labels.numel())
- cls_err, bbox_mae = 1 - metric[0] / metric[1], metric[2] / metric[3]
- animator.add(epoch + 1, (cls_err, bbox_mae))
- print(f'class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}')
- print(f'{len(train_iter.dataset) / timer.stop():.1f} examples/sec on '
- f'{str(device)}')
结果:
