在不断发展的人工智能领域,生成式AI无疑已成为创新的基石。 这些先进的模型,无论是用于创作艺术、生成文本还是增强医学成像,都以产生非常逼真和创造性的输出而闻名。 然而,生成式AI的力量是有代价的—模型大小和计算要求。 随着生成式AI模型的复杂性和规模不断增长,它们需要更多的计算资源和存储空间。 这可能是一个重大障碍,特别是在边缘设备或资源受限的环境上部署这些模型时。 这就是具有模型量化功能的生成式 AI 发挥作用的地方,它提供了一种在不牺牲质量的情况下缩小这些庞大模型的方法。

在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 可编程3D场景编辑器
简而言之,模型量化(Model Quantization)会降低模型参数数值的精度。 在深度学习模型中,神经网络通常采用高精度浮点值(例如 32 位或 64 位)来表示权重和激活。 模型量化将这些值转换为较低精度的表示形式(例如 8 位整数),同时保留模型的功能。

模型量化在生成式AI中的好处包括:
尽管有其优势,生成式AI中的模型量化也面临着一些挑战:
一些生成式AI模型量化的应用示例如下:
将模型量化纳入生成式 AI 可以通过 TensorFlow 和 PyTorch 等流行的深度学习框架来实现。 TensorFlow Lite 的量化感知训练(quantization-aware training)和 PyTorch 的动态量化(dynamic quantization)等工具和技术提供了在项目中实现量化的简单方法。
TensorFlow 提供了用于模型量化的工具包,特别适合设备上部署。 以下代码片段演示了使用 TensorFlow Lite 量化 TensorFlow 模型:
- import tensorflow as tf
- # Load your saved model
- converter = tf.lite.TFLiteConverter.from_saved_model("your_model_directory")
- converter.optimizations = [tf.lite.Optimize.DEFAULT]
- tflite_model = converter.convert()
- open("quantized_model.tflite", "wb").write(tflite_model)
在此代码中,我们首先导入 TensorFlow 库, `tf.lite.TFLiteConverter `用于从模型目录加载保存的模型,将优化设置为 tf.lite.Optimize.DEFAULT 以启用默认量化,最后,我们转换模型并将其保存为量化的 TensorFlow Lite 模型。
PyTorch 提供动态量化,允许你在推理过程中量化模型。 下面是 PyTorch 动态量化的代码片段:
- import torch
- from torch.quantization import quantize_dynamic
- model = YourPyTorchModel()
- model.qconfig = torch.quantization.get_default_qconfig('fbgemm')
- quantized_model = quantize_dynamic(model, qconfig_spec={torch.nn.Linear}, dtype=torch.qint8)
在此代码中,我们首先导入必要的库,然后通过 YourPyTorchModel()创建PyTorch 模型,将量化配置 (qconfig) 设置为适合模型的默认配置,最后使用 quantize_dynamic 来量化模型,得到量化模型 quantized_model。
内存占用:
推理速度和效率:
输出质量:
推理速度与模型质量:
比较数据强调了量化的资源效率优势以及现实应用中输出质量的权衡。
虽然模型量化为在资源有限的环境中部署生成式 AI 模型提供了多种好处,但遵循最佳实践以确保量化工作取得成功至关重要。 以下是一些关键建议:
在生成式AI领域,模型量化是应对模型大小、内存消耗和计算需求挑战的强大解决方案。 通过降低数值精度,同时保持模型质量,量化使生成式 AI 模型能够将其覆盖范围扩展到资源受限的环境。 随着研究人员和开发人员不断微调量化过程,我们预计生成式AI将部署在从移动设备到边缘计算等更加多样化和创新的应用程序中。 在此过程中,关键是在模型大小和模型质量之间找到适当的平衡,释放生成式AI的真正潜力。
原文链接:生成式AI模型量化 - BimAnt