( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = R 2 (x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2 (x−x0)2+(y−y0)2+(z−z0)2=R2,
特别的,当球心位于坐标原点 ( 0 , 0 , 0 ) (0,0,0) (0,0,0)方程形式简化为 x 2 + y 2 + z 2 = R 2 x^2+y^2+z^2=R^2 x2+y2+z2=R2
x 2 + y 2 + z 2 − 2 ( x 0 x + y 0 y + z 0 z ) + x 0 2 + y 0 2 + z 0 2 − R 2 = 0 x^2+y^2+z^2-2(x_0x+y_0y+z_0z)+x_0^2+y_0^2+z_0^2-R^2=0 x2+y2+z2−2(x0x+y0y+z0z)+x02+y02+z02−R2=0
x 2 + y 2 + z 2 + D ( x , y , z ) + E = 0 x^2+y^2+z^2+D (x,y,z)+E=0 x2+y2+z2+D(x,y,z)+E=0
将一般式化为标准式时,根据 D ( x , y , z ) D(x,y,z) D(x,y,z)可以直接确定圆心坐标 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0),只需要对除以系数 − 2 -2 −2即可
柱面由母线和准线确定,母线是直线,而准线是平面曲线
动直线L沿动定曲线C平行移动时所生成的曲面叫作柱面
母线决定了柱体的侧面
准线决定了主体的地面
虽然给定母线和准线,可以唯一确定一个柱面,但给定一个柱面却无法确定唯一的准线,
我们主要讨论的是母线平行于坐标轴的柱面,是最简单也是最长见的柱面类型
平面曲线的方程仅包含2个字母,例如 x O y xOy xOy上的曲线可以表示为 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0,准线是平面曲线也是主要的研究类型
例如,准线 C C C是 x O y xOy xOy坐标面上的曲线,其方程为 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0,而母线平行于 z z z轴的空间柱面方程可以表示为 f ( x , y ) = 0 f(x,y)=0 f(x,y)=0
母线平行于 z z z轴的二次曲面
圆柱方程: x 2 + y 2 = R x^2+y^2=R x2+y2=R
椭圆柱面方程: x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1
双曲柱面方程: x 2 a 2 − y 2 b 2 = 1 \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 a2x2−b2y2=1
抛物柱面方程: y 2 = 2 p x y^2=2px y2=2px
绕 u 1 u_1 u1轴旋转
曲线C上的点 M 1 M_1 M1在旋转过程中的轨迹所在平面和 u 0 O u 2 u_0Ou_2 u0Ou2平行
根据勾股定理,可以确定 M 1 , M M_1,M M1,M在非旋转轴坐标轴上的坐标的关系为:平方和相等,记为 u 0 ( M ) 2 + u 2 ( M ) 2 = u 0 ( M 1 ) 2 + u 2 ( M 1 ) 2 u_0(M)^2+u_2(M)^2=u_0(M_1)^2+u_2(M_1)^2 u0(M)2+u2(M)2=u0(M1)2+u2(M1)2
而曲线 C C C属于平面 u 1 O u 2 u_1Ou_2 u1Ou2,从而 u 0 ( M ) 2 + u 2 ( M ) 2 = u 2 ( M 1 ) 2 u_0(M)^2+u_2(M)^2=u_2(M_1)^2 u0(M)2+u2(M)2=u2(M1)2仅根据这个关系,我们还无法得到能够完整描述 M M M的各个坐标分量的关系(方程),需要借助曲线 C C C的方程 C : f ( u 1 , u 2 ) = 0 C:f(u_1,u_2)=0 C:f(u1,u2)=0
类似的,可以讨论绕 u 2 u_2 u2轴旋转的情况
设在 y O z yOz yOz坐标面上有曲线 C : f ( y , z ) = 0 C:f(y,z)=0 C:f(y,z)=0
把 C C C绕 z z z轴旋转一周,得到一个以 z z z轴为轴的旋转曲面,它的方程的构造:
设 M 1 ( 0 , y 1 , z 1 ) M_1(0,y_1,z_1) M1(0,y1,z1)是曲线 C C C上的一点(位于坐标面 y O z yOz yOz),有 f ( y 1 , z 1 ) = 0 f(y_1,z_1)=0 f(y1,z1)=0成立
当 C C C绕 z z z轴旋转时,点 M 1 M_1 M1绕 z z z轴转到另一点 M ( x , y , z ) M(x,y,z) M(x,y,z)
此时 z = z 1 z=z_1 z=z1
同时点 M M M,到 z z z轴的距离, d = x 2 + y 2 = 0 2 + y 1 2 = ∣ y 1 ∣ d=\sqrt{x^2+y^2}=\sqrt{0^2+y_1^2}=|y_1| d=x2+y2=02+y12=∣y1∣,此时 y 1 = ± d = ± x 2 + y 2 y_1=\pm{d}=\pm{\sqrt{x^2+y^2}} y1=±d=±x2+y2
将 z 1 , y 1 z_1,y_1 z1,y1带入到 f ( y 1 , z 1 ) = 0 f(y_1,z_1)=0 f(y1,z1)=0,即 f ( ± x 2 + y 2 , z ) = 0 f(\pm{\sqrt{x^2+y^2}},z)=0 f(±x2+y2,z)=0
(1),此方程描述了旋转曲面上任意点满足的方程,即旋转曲面的方程(2)y O z yOz yOz面上抛物线 C : y 2 = 2 p z C:y^2=2pz C:y2=2pz绕 z z z轴旋转所成的曲面方程为 x 2 + y 2 = 2 p z x^2+y^2=2pz x2+y2=2pz,这类曲线称为旋转抛物面
y O z yOz yOz面上椭圆线 C : y 2 a 2 + z 2 b 2 = 1 C:\frac{y^2}{a^2}+\frac{z^2}{b^2}=1 C:a2y2+b2z2=1绕 z z z轴旋转所成的曲面方程为 x 2 + y 2 a 2 + z 2 b 2 = 1 \frac{x^2+y^2}{a^2}+\frac{z^2}{b^2}=1 a2x2+y2+b2z2=1,这类曲线称为旋转椭圆面
x O z xOz xOz面上双曲线 C : x 2 a 2 − z 2 b 2 = 1 C:\frac{x^2}{a^2}-\frac{z^2}{b^2}=1 C:a2x2−b2z2=1绕 z z z轴, x x x轴旋转所成的曲面方程分别为 x 2 + y 2 a 2 − z 2 b 2 = 1 \frac{x^2+y^2}{a^2}-\frac{z^2}{b^2}=1 a2x2+y2−b2z2=1, x 2 a 2 − y 2 + z 2 b 2 = 1 \frac{x^2}{a^2}-\frac{y^2+z^2}{b^2}=1 a2x2−b2y2+z2=1,这两类曲线分别称为旋转单叶双曲面,旋转双叶双曲面