• gma 1.x 气候气象指数计算源代码(分享)


    本模块的主要内建子模块如下:

    如何获得完整代码: 回复博主 或者 留言/私信 。

    注意:本代码完全开源,可随意修改使用。 但如果您的成果使用或参考了本段代码,给予一定的引用说明(非强制),包括但不限于:

    • 1.作者:洛
    • 2.网站:gma.luosgeo.com
    • 3.PyPI:https://pypi.org/project/gma/
    • 3.GitHub:https://github.com/LiChongrui

    其中:

    clindex:气候指标计算函数
    cmana:气候诊断函数
    et0:蒸散计算函数
    static:气候常量
    utils:通用工具

    示例代:1:

    from ..core.arraypro import *
    from .utils import *
    
    #################################### 累积概率计算
    def GammaCP(Data, Axis):
        '''gamma 分布累积概率'''
        if np.nanmin(Data) < 0:
            Data = Data + np.abs(np.nanmin(Data)) * 2    
            # Data = Data + 1000
    
        PF = ParameterFitting(Data, Axis = Axis)
        Data = PF.Data
        Axis = PF.Axis
    
        # 计算 0 值概率并填充 0 值 为 NaN
        Zeros = (Data == 0).sum(axis = Axis, keepdims = True)
        ProbabilitiesOfZero = Zeros / Data.shape[Axis]
        Data[Data == 0] = np.nan
    
        Alphas, Betas = ParameterFitting(Data, Axis = Axis).MLE()
        # 使用gamma CDF 查找 gamma 概率值
        GammaProbabilities = stats.gamma.cdf(Data, a = Alphas, scale = Betas)
        
        Probabilities = ProbabilitiesOfZero + (1 - ProbabilitiesOfZero) * GammaProbabilities
        
        return Probabilities 
    
    def LogLogisticCP(Data, Axis):
        '''Log-Logistic 分布累积概率'''
        PF = ParameterFitting(Data, Axis)
        Alpha, Beta, Gamma1 = PF.LMoment()
         
        Probabilities = 1 / (1 + (Alpha / (PF.Data - Gamma1)) ** Beta)
        
        # 由于 scipy 对 non 值处理过于简单,这里不使用 scipy 的函数
        # Probabilities = stats.fisk.cdf(PF.Data, Beta, loc = Gamma1, scale = Alpha)
    
        return Probabilities
    
    def Pearson3CP(Data, Axis):
        '''pearson III 分布累积概率'''
        if np.nanmin(Data) < 0:
            Data = Data + np.abs(np.nanmin(Data)) * 2    
    
        PF = ParameterFitting(Data, Axis)
        Data = PF.Data
        Axis = PF.Axis  
    
        Loc, Scale, Skew = PF.LMoment2()
    
        Alpha = 4.0 / (Skew ** 2)
        MINPossible = Loc - ((Alpha * Scale * Skew) / 2.0)
        
        Zeros = (Data == 0).sum(axis = Axis, keepdims = True)
        ProbabilitiesOfZero = Zeros / Data.shape[Axis]
    
        Probabilities = stats.pearson3.cdf(Data, Skew, Loc, Scale)
    
        Probabilities[(Data < 0.0005) & (ProbabilitiesOfZero > 0.0)] = 0.0
        Probabilities[(Data < 0.0005) & (ProbabilitiesOfZero <= 0.0)] = 0.0005
    
        Probabilities[(Data <= MINPossible) & (Skew >= 0)] = 0.0005
        Probabilities[(Data >= MINPossible) & (Skew < 0)] = 0.9995
    
        Probabilities = ProbabilitiesOfZero + (1.0 - ProbabilitiesOfZero) * Probabilities
    
        return Probabilities
    
    def _ReshapeAndExtend(Data, Axis, Periodicity):
        '''更改输入数据维度为 (Axis / Periodicity, Periodicity, N),并补充末尾缺失数据'''
        # 交换设置轴到 0 
        if Data.ndim > 1:
            Data = np.swapaxes(Data, 0, Axis)
            S = Data.shape
            S0, S1 = S[0], np.prod(S[1:], dtype = int)
            Data = Data.reshape((S0, S1))
        else:
            Data = np.expand_dims(Data, -1)
        
        # 填充不足 Data.shape[0] / Periodicity
        B = Data.shape[0] % Periodicity
        PW = 0 if B == 0 else Periodicity - B
        
        Data = np.pad(Data, ((0, PW), (0,0)), mode = "constant", constant_values = np.nan)
        
        # 更改为目标维度(3维)
        PeriodicityTimes = Data.shape[0] // Periodicity 
        
        return Data.reshape(PeriodicityTimes, Periodicity, Data.shape[1])
    
    def _RestoreReshapeAndExtend(Data, Axis, Shape):
        '''对 _ReshapeAndExtend 修改的维度和数据进行还原'''
        # 还原为原始维度(2维)
        Data = Data.reshape(np.prod(Data.shape[:2]), *Data.shape[2:])
    
        # 去除尾部填充值
        Data = Data[:Shape[Axis]]
    
        # 还原到初始状态
        SHP = list(Shape)
        SHP.pop(Axis)
        SHP = [Shape[Axis]] + SHP
    
        Data = Data.reshape(SHP)
        Data = np.swapaxes(Data, Axis, 0)
        
        return Data
    
    ############### 不同的计算方式
    def _Fit(WBInScale, Periodicity, Distribution):
        '''计算标准化指数'''
        # 1.计算累积概率
        Probabilities = eval(f'{Distribution}CP')(WBInScale, 0)
        if Periodicity == 1:
            Probabilities = np.expand_dims(Probabilities, 1)
            
        # 2.生成结果
        OutInScale = stats.norm.ppf(Probabilities)
        return OutInScale
    
    def _API(WBInScale, Axis):
        '''计算距平指数'''
        # 1.计算平均值或趋势值
        Mean = np.nanmean(WBInScale, axis = Axis, dtype = np.float64, keepdims = True)
        
        # 4.生成结果
        OutInScale = (WBInScale - Mean) / Mean
        
        return OutInScale
    
    ############### 计算结果
    def _Compute(Data, Axis, Scale, Periodicity, Distribution):
        '''自动计算'''   
        Periodicity = ValueType(Periodicity, 'pint')
        
        # 0.数据准备
        DP = DataPreparation(Data, Axis) 
        Data = DP.Data
        SHP = Data.shape
        Axis = DP.Axis
        
        # 1.计算尺度
        WBInScale = DP.SumScale(Scale)
        if not (SHP[Axis] > Periodicity) and (SHP[Axis] > Scale):
            return np.full(WBInScale.shape, np.nan)
    
        # 2.更改输入数据维度为 (Axis / Periodicity, Periodicity, N)
        WBInScale = _ReshapeAndExtend(WBInScale, Axis, Periodicity)
    
        # 3.生成结果
        if Distribution == 'API':
            OutInScale = _API(WBInScale, Axis)
        else:
            OutInScale = _Fit(WBInScale, Periodicity, Distribution)
    
        # 4.还原数据
        OutInScale = _RestoreReshapeAndExtend(OutInScale, Axis, SHP)    
        
        return OutInScale
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159

    示例代码2:

    #################################### SPEI
    def SPEI(PRE, PET, Axis = None, Scale = 1, Periodicity = 12, Distribution = 'LogLogistic'):
        '''计算SPEI'''
        Distribution = GetDistribution(Distribution)
        PRE, PET = INITArray(PRE, PET)
    
        WB = np.subtract(PRE, PET, dtype = PRE.dtype)
        
        SPEIInScale = _Compute(WB, Axis, Scale, Periodicity, Distribution)
        
        return SPEIInScale
    
    #################################### SPI
    def SPI(PRE, Axis = None, Scale = 1, Periodicity = 12, Distribution = 'Gamma'):
        '''计算 SPI'''
        Distribution = GetDistribution(Distribution)
        SPIInScale = _Compute(PRE, Axis, Scale, Periodicity, Distribution)
        
        return SPIInScale
    
    #################################### PAP
    def PAP(PRE, Axis = None, Scale = 1, Periodicity = 12):
        '''降水距平百分率'''
        PAPInScale = _Compute(PRE, Axis, Scale, Periodicity, 'API') 
        
        return PAPInScale
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • 相关阅读:
    C语言实验四 循环结构程序设计(一)
    分享一个Vue实现图片水平瀑布流的插件
    css:标准流、浮动、定位
    如何靠写代码赚钱?
    详解 IP 协议
    Lsky Pro+云服务器搭建私人图床
    基于SSM(SpringBoot+Mybatis+MySql+Layui)实现的健身房管理系统
    【智能优化算法】NSGA-III优化算法算法(Matlab代码实现)
    【Unity性能优化】静态资源优化——Audio优化
    家具vr虚拟交互展示外包制作
  • 原文地址:https://blog.csdn.net/weixin_42155937/article/details/134235693