Armin Cheraghalipour 根据树木生长的特点于2017 年提出了一种新的元启发式优化算法TGA该算将始定量的群按照解的适应度从高到低排序,分成4组具有不同功能的种群。每次迭代分别进行处理。

TGA.m
- % "Tree growth algorithm (TGA): A novel approach for solving
- % optimization problems"
- function [fitG,Xgb,curve] = TGA(N, max_Iter, lb,ub ,dim, fun)
- % Parameters
- num_tree1 = 3; % size of first group
- num_tree2 = 5; % size of second group
- num_tree4 = 3; % size of fourth group
- theta = 0.8; % tree reduction rate of power
- lambda = 0.5; % control nearest tree
- % Limit number of N4 to N1
- if num_tree4 > num_tree1 + num_tree2
- num_tree4 = num_tree1 + num_tree2;
- end
- % Initial
- X = zeros(N,dim);
- for i = 1:N
- for d = 1:dim
- X(i,d) = lb + (ub - lb) * rand();
- end
- end
- % Fitness
- fit = zeros(1,N);
- fitG = inf;
- for i = 1:N
- fit(i) = fun(X(i,:));
- % Best
- if fit(i) < fitG
- fitG = fit(i);
- Xgb = X(i,:);
- end
- end
- % Sort tree from best to worst
- [fit, idx] = sort(fit,'ascend');
- X = X(idx,:);
- % Initial
- dist = zeros(1,num_tree1 + num_tree2);
- X1 = zeros(num_tree1,dim);
- Xnew = zeros(num_tree4,dim);
- Fnew = zeros(1,num_tree4);
- curve = zeros(1,max_Iter);
- curve(1) = fitG;
- t = 2;
- % Iterations
- while t <= max_Iter
- % {1} Best trees group
- for i = 1:num_tree1
- r1 = rand();
- for d = 1:dim
- % Local search (1)
- X1(i,d) = (X(i,d) / theta) + r1 * X(i,d);
- end
- % Boundary
- XB = X1(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
- X1(i,:) = XB;
- % Fitness
- fitT = fun(X1(i,:));
- % Greedy selection
- if fitT <= fit(i)
- X(i,:) = X1(i,:);
- fit(i) = fitT;
- end
- end
- % {2} Competitive for light tree group
- X_ori = X;
- for i = num_tree1 + 1 : num_tree1 + num_tree2
- % Neighbor tree
- for j = 1 : num_tree1 + num_tree2
- if j ~= i
- % Compute Euclidean distance (2)
- dist(j) = sqrt(sum((X_ori(j,:) - X_ori(i,:)) .^ 2));
- else
- % Solve same tree problem
- dist(j) = inf;
- end
- end
- % Find 2 trees with shorter distance
- [~, idx] = sort(dist,'ascend');
- T1 = X_ori(idx(1),:);
- T2 = X_ori(idx(2),:);
- % Alpha in [0,1]
- alpha = rand();
- for d = 1:dim
- % Compute linear combination between 2 shorter tree (3)
- y = lambda * T1(d) + (1 - lambda) * T2(d);
- % Move tree i between 2 adjacent trees (4)
- X(i,d) = X(i,d) + alpha * y;
- end
- % Boundary
- XB = X(i,:); XB(XB > ub) = ub; XB(XB < lb) = lb;
- X(i,:) = XB;
- % Fitness
- fit(i) = fun(X(i,:));
- end
- % {3} Remove and replace group
- for i = num_tree1 + num_tree2 + 1 : N
- for d = 1:dim
- % Generate new tree by remove worst tree
- X(i,d) = lb + (ub - lb) * rand();
- end
- % Fitness
- fit(i) = fun(X(i,:) );
- end
- % {4} Reproduction group
- for i = 1:num_tree4
- % Random a best tree
- r = randi([1,num_tree1]);
- Xbest = X(r,:);
- % Mask operator
- mask = randi([0,1],1,dim);
- % Mask opration between new & best trees
- for d = 1:dim
- % Generate new solution
- Xn = lb + (ub - lb) * rand();
- if mask(d) == 1
- Xnew(i,d) = Xbest(d);
- elseif mask(d) == 0
- % Generate new tree
- Xnew(i,d) = Xn;
- end
- end
- % Fitness
- Fnew(i) = fun(Xnew(i,:));
- end
- % Sort population get best nPop trees
- XX = [X; Xnew];
- FF = [fit, Fnew];
- [FF, idx] = sort(FF,'ascend');
- X = XX(idx(1:N),:);
- fit = FF(1:N);
- % Global best
- if fit(1) < fitG
- fitG = fit(1);
- Xgb = X(1,:);
- end
- curve(t) = fitG;
- t = t + 1;
- end
- end
func_plot.m
- % This function draw the benchmark functions
-
- function func_plot(func_name)
-
- [lb,ub,dim,fobj]=Get_Functions_details(func_name);
-
- switch func_name
- case 'F1'
- x=-100:2:100; y=x; %[-100,100]
-
- case 'F2'
- x=-100:2:100; y=x; %[-10,10]
-
- case 'F3'
- x=-100:2:100; y=x; %[-100,100]
-
- case 'F4'
- x=-100:2:100; y=x; %[-100,100]
- case 'F5'
- x=-200:2:200; y=x; %[-5,5]
- case 'F6'
- x=-100:2:100; y=x; %[-100,100]
- case 'F7'
- x=-1:0.03:1; y=x; %[-1,1]
- case 'F8'
- x=-500:10:500;y=x; %[-500,500]
- case 'F9'
- x=-5:0.1:5; y=x; %[-5,5]
- case 'F10'
- x=-20:0.5:20; y=x;%[-500,500]
- case 'F11'
- x=-500:10:500; y=x;%[-0.5,0.5]
- case 'F12'
- x=-10:0.1:10; y=x;%[-pi,pi]
- case 'F13'
- x=-5:0.08:5; y=x;%[-3,1]
- case 'F14'
- x=-100:2:100; y=x;%[-100,100]
- case 'F15'
- x=-5:0.1:5; y=x;%[-5,5]
- case 'F16'
- x=-1:0.01:1; y=x;%[-5,5]
- case 'F17'
- x=-5:0.1:5; y=x;%[-5,5]
- case 'F18'
- x=-5:0.06:5; y=x;%[-5,5]
- case 'F19'
- x=-5:0.1:5; y=x;%[-5,5]
- case 'F20'
- x=-5:0.1:5; y=x;%[-5,5]
- case 'F21'
- x=-5:0.1:5; y=x;%[-5,5]
- case 'F22'
- x=-5:0.1:5; y=x;%[-5,5]
- case 'F23'
- x=-5:0.1:5; y=x;%[-5,5]
- end
-
-
-
- L=length(x);
- f=[];
-
- for i=1:L
- for j=1:L
- if strcmp(func_name,'F15')==0 && strcmp(func_name,'F19')==0 && strcmp(func_name,'F20')==0 && strcmp(func_name,'F21')==0 && strcmp(func_name,'F22')==0 && strcmp(func_name,'F23')==0
- f(i,j)=fobj([x(i),y(j)]);
- end
- if strcmp(func_name,'F15')==1
- f(i,j)=fobj([x(i),y(j),0,0]);
- end
- if strcmp(func_name,'F19')==1
- f(i,j)=fobj([x(i),y(j),0]);
- end
- if strcmp(func_name,'F20')==1
- f(i,j)=fobj([x(i),y(j),0,0,0,0]);
- end
- if strcmp(func_name,'F21')==1 || strcmp(func_name,'F22')==1 ||strcmp(func_name,'F23')==1
- f(i,j)=fobj([x(i),y(j),0,0]);
- end
- end
- end
-
- surfc(x,y,f,'LineStyle','none');
-
- end
-
Get_Functions_details.m
- % This function containts full information and implementations of the benchmark
- % functions in Table 1, Table 2, and Table 3 in the paper
-
- % lb is the lower bound: lb=[lb_1,lb_2,...,lb_d]
- % up is the uppper bound: ub=[ub_1,ub_2,...,ub_d]
- % dim is the number of variables (dimension of the problem)
-
- function [lb,ub,dim,fobj] = Get_Functions_details(F)
-
-
- switch F
- case 'F1'
- fobj = @F1;
- lb=-100;
- ub=100;
- dim=30;
-
- case 'F2'
- fobj = @F2;
- lb=-10;
- ub=10;
- dim=30;
-
- case 'F3'
- fobj = @F3;
- lb=-100;
- ub=100;
- dim=30;
-
- case 'F4'
- fobj = @F4;
- lb=-100;
- ub=100;
- dim=30;
-
- case 'F5'
- fobj = @F5;
- lb=-30;
- ub=30;
- dim=30;
-
- case 'F6'
- fobj = @F6;
- lb=-100;
- ub=100;
- dim=30;
-
- case 'F7'
- fobj = @F7;
- lb=-1.28;
- ub=1.28;
- dim=30;
-
- case 'F8'
- fobj = @F8;
- lb=-500;
- ub=500;
- dim=30;
-
- case 'F9'
- fobj = @F9;
- lb=-5.12;
- ub=5.12;
- dim=30;
-
- case 'F10'
- fobj = @F10;
- lb=-32;
- ub=32;
- dim=30;
-
- case 'F11'
- fobj = @F11;
- lb=-600;
- ub=600;
- dim=30;
-
- case 'F12'
- fobj = @F12;
- lb=-50;
- ub=50;
- dim=30;
-
- case 'F13'
- fobj = @F13;
- lb=-50;
- ub=50;
- dim=30;
-
- case 'F14'
- fobj = @F14;
- lb=-65.536;
- ub=65.536;
- dim=2;
-
- case 'F15'
- fobj = @F15;
- lb=-5;
- ub=5;
- dim=4;
-
- case 'F16'
- fobj = @F16;
- lb=-5;
- ub=5;
- dim=2;
-
- case 'F17'
- fobj = @F17;
- lb=[-5,0];
- ub=[10,15];
- dim=2;
-
- case 'F18'
- fobj = @F18;
- lb=-2;
- ub=2;
- dim=2;
-
- case 'F19'
- fobj = @F19;
- lb=0;
- ub=1;
- dim=3;
-
- case 'F20'
- fobj = @F20;
- lb=0;
- ub=1;
- dim=6;
-
- case 'F21'
- fobj = @F21;
- lb=0;
- ub=10;
- dim=4;
-
- case 'F22'
- fobj = @F22;
- lb=0;
- ub=10;
- dim=4;
-
- case 'F23'
- fobj = @F23;
- lb=0;
- ub=10;
- dim=4;
- end
-
- end
-
- % F1
-
- function o = F1(x)
- o=sum(x.^2);
- end
-
- % F2
-
- function o = F2(x)
- o=sum(abs(x))+prod(abs(x));
- end
-
- % F3
-
- function o = F3(x)
- dim=size(x,2);
- o=0;
- for i=1:dim
- o=o+sum(x(1:i))^2;
- end
- end
-
- % F4
-
- function o = F4(x)
- o=max(abs(x));
- end
-
- % F5
-
- function o = F5(x)
- dim=size(x,2);
- o=sum(100*(x(2:dim)-(x(1:dim-1).^2)).^2+(x(1:dim-1)-1).^2);
- end
-
- % F6
-
- function o = F6(x)
- o=sum(abs((x+.5)).^2);
- end
-
- % F7
-
- function o = F7(x)
- dim=size(x,2);
- o=sum([1:dim].*(x.^4))+rand;
- end
-
- % F8
-
- function o = F8(x)
- o=sum(-x.*sin(sqrt(abs(x))));
- end
-
- % F9
-
- function o = F9(x)
- dim=size(x,2);
- o=sum(x.^2-10*cos(2*pi.*x))+10*dim;
- end
-
- % F10
-
- function o = F10(x)
- dim=size(x,2);
- o=-20*exp(-.2*sqrt(sum(x.^2)/dim))-exp(sum(cos(2*pi.*x))/dim)+20+exp(1);
- end
-
- % F11
-
- function o = F11(x)
- dim=size(x,2);
- o=sum(x.^2)/4000-prod(cos(x./sqrt([1:dim])))+1;
- end
-
- % F12
-
- function o = F12(x)
- dim=size(x,2);
- o=(pi/dim)*(10*((sin(pi*(1+(x(1)+1)/4)))^2)+sum((((x(1:dim-1)+1)./4).^2).*...
- (1+10.*((sin(pi.*(1+(x(2:dim)+1)./4)))).^2))+((x(dim)+1)/4)^2)+sum(Ufun(x,10,100,4));
- end
-
- % F13
-
- function o = F13(x)
- dim=size(x,2);
- o=.1*((sin(3*pi*x(1)))^2+sum((x(1:dim-1)-1).^2.*(1+(sin(3.*pi.*x(2:dim))).^2))+...
- ((x(dim)-1)^2)*(1+(sin(2*pi*x(dim)))^2))+sum(Ufun(x,5,100,4));
- end
-
- % F14
-
- function o = F14(x)
- aS=[-32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32 -32 -16 0 16 32;,...
- -32 -32 -32 -32 -32 -16 -16 -16 -16 -16 0 0 0 0 0 16 16 16 16 16 32 32 32 32 32];
-
- for j=1:25
- bS(j)=sum((x'-aS(:,j)).^6);
- end
- o=(1/500+sum(1./([1:25]+bS))).^(-1);
- end
- % F15
- function o = F15(x)
- aK=[.1957 .1947 .1735 .16 .0844 .0627 .0456 .0342 .0323 .0235 .0246];
- bK=[.25 .5 1 2 4 6 8 10 12 14 16];bK=1./bK;
- o=sum((aK-((x(1).*(bK.^2+x(2).*bK))./(bK.^2+x(3).*bK+x(4)))).^2);
- end
- % F16
- function o = F16(x)
- o=4*(x(1)^2)-2.1*(x(1)^4)+(x(1)^6)/3+x(1)*x(2)-4*(x(2)^2)+4*(x(2)^4);
- end
- % F17
- function o = F17(x)
- o=(x(2)-(x(1)^2)*5.1/(4*(pi^2))+5/pi*x(1)-6)^2+10*(1-1/(8*pi))*cos(x(1))+10;
- end
- % F18
- function o = F18(x)
- o=(1+(x(1)+x(2)+1)^2*(19-14*x(1)+3*(x(1)^2)-14*x(2)+6*x(1)*x(2)+3*x(2)^2))*...
- (30+(2*x(1)-3*x(2))^2*(18-32*x(1)+12*(x(1)^2)+48*x(2)-36*x(1)*x(2)+27*(x(2)^2)));
- end
- % F19
- function o = F19(x)
- aH=[3 10 30;.1 10 35;3 10 30;.1 10 35];cH=[1 1.2 3 3.2];
- pH=[.3689 .117 .2673;.4699 .4387 .747;.1091 .8732 .5547;.03815 .5743 .8828];
- o=0;
- for i=1:4
- o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
- end
- end
- % F20
- function o = F20(x)
- aH=[10 3 17 3.5 1.7 8;.05 10 17 .1 8 14;3 3.5 1.7 10 17 8;17 8 .05 10 .1 14];
- cH=[1 1.2 3 3.2];
- pH=[.1312 .1696 .5569 .0124 .8283 .5886;.2329 .4135 .8307 .3736 .1004 .9991;...
- .2348 .1415 .3522 .2883 .3047 .6650;.4047 .8828 .8732 .5743 .1091 .0381];
- o=0;
- for i=1:4
- o=o-cH(i)*exp(-(sum(aH(i,:).*((x-pH(i,:)).^2))));
- end
- end
- % F21
- function o = F21(x)
- aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
- cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
- o=0;
- for i=1:5
- o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
- end
- end
-
- % F22
-
- function o = F22(x)
- aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
- cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
-
- o=0;
- for i=1:7
- o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
- end
- end
- % F23
- function o = F23(x)
- aSH=[4 4 4 4;1 1 1 1;8 8 8 8;6 6 6 6;3 7 3 7;2 9 2 9;5 5 3 3;8 1 8 1;6 2 6 2;7 3.6 7 3.6];
- cSH=[.1 .2 .2 .4 .4 .6 .3 .7 .5 .5];
- o=0;
- for i=1:10
- o=o-((x-aSH(i,:))*(x-aSH(i,:))'+cSH(i))^(-1);
- end
- end
-
- function o=Ufun(x,a,k,m)
- o=k.*((x-a).^m).*(x>a)+k.*((-x-a).^m).*(x<(-a));
- end
main.m
- %_________________________________________________________________________________
- %_________________________________________________________________________________
- clear all
- clc
-
- SearchAgents_no=30; % Number of search agents
- Function_name='F1'; % Name of the test function that can be from F1 to F23
- Max_iteration=500; % Maximum numbef of iterations
- % Load details of the selected benchmark function
- [lb,ub,dim,fobj]=Get_Functions_details(Function_name);
- [Best_score,Best_pos,cg_curve]=TGA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);
-
- display(['The best solution obtained by OPTIMIZER is : ', num2str(Best_pos)]);
- display(['The best optimal value of the objective function found by OPTIMIZER is : ', num2str(Best_score)]);
-
- %Draw objective space
- figure,
- subplot(1,2,1);
- func_plot(Function_name);
- title([Function_name])
- xlabel('x_1');
- ylabel('x_2');
- zlabel([Function_name,'( x_1 , x_2 )'])
- set(gca,'color','none')
- grid off
-
- subplot(1,2,2);
- semilogy(cg_curve,'Color','b','LineWidth',4);
- title('Convergence curve')
- xlabel('Iteration');
- ylabel('Best fitness obtained so far');
- axis tight
- grid off
- box on
- legend('TGA')