此题为欧拉通路,必须要满足奇点的个数为0或2个
奇点:度数(入度出度)为奇数的点
如果奇点为2个或者0个就可以直接一笔化成
eg.


我们发现奇数点个数每增加2个就多一笔
- #include
- using namespace std;
- const int N = 2e5 + 10;
- int n, m, a, b, du[N], ans;
- int main()
- {
- cin >> n >> m;
- for(int i = 1; i <= m; i ++)
- {
- cin >> a >> b;
- du[a] ++, du[b] ++;
- }
- for(int i = 1; i <= n; i ++)
- {
- if(du[i] & 1)ans ++;
- }
- cout << max(1, ans / 2);//最少也得画一笔
- return 0;
- }
我们枚举每一个圆,判断这个圆包含1和2哪个点,如果如果都包含说明这个线不会穿过这个圆,否则就将这个圆的穿线个数+1

- #include
- using namespace std;
- const int N = 2e5 + 10;
- int n, x[N], y[N], r[N], xx1, yy1, xx2, yy2, ans;
- int dist(int xx, int yy, int xxx, int yyy)
- {
- return (xxx - xx) * (xxx - xx) + (yyy - yy) * (yyy - yy);
- }
- int main()
- {
-
- cin >> n;
- for(int i = 1; i <= n; i ++)cin >> x[i];
- for(int i = 1; i <= n; i ++)cin >> y[i];
- for(int i = 1; i <= n; i ++)cin >> r[i];
- cin >> xx1 >> yy1 >> xx2 >> yy2;
- for(int i = 1; i <= n; i ++)
- {
- bool d1 = dist(xx1, yy1, x[i], y[i]) <= r[i] * r[i];
- bool d2 = dist(xx2, yy2, x[i], y[i]) <= r[i] * r[i];
- if(d1 ^ d2)ans ++;
- }
- cout << ans;
- return 0;
- }
对书进行dfs,看是选a还是选b
- #include
- using namespace std;
- const int N = 2e5 + 10;
- int x, ans, a[N], b[N];
- bool v[N];
- void dfs(int dep)
- {
- if(dep == x + 1)
- {
- ans ++;
- return;
- }
- if(!v[a[dep]])
- {
- v[a[dep]] = 1;
- dfs(dep + 1);
- v[a[dep]] = 0;
- }
- if(!v[b[dep]])
- {
- v[b[dep]] = 1;
- dfs(dep + 1);
- v[b[dep]] = 0;
- }
- }
- int main()
- {
- cin >> x;
- for(int i = 1; i <= x; i ++)
- {
- cin >> a[i] >> b[i];
- }
- dfs(1);
- cout << ans << '\n';
- return 0;
- }
找规律,将为1的数的下标先预处理出来

- #include
- using namespace std;
- vector<int> v;
- int n, x;
- int main()
- {
- ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
- for(int i = 1, j = 0; i <= 1e9; i += j ++)v.push_back(i);
- cin >> n;
- for(int i = 1; i <= n; i ++)
- {
- cin >> x;
- auto it = lower_bound(v.begin(), v.end(), x);
- bool flag = (it != v.end() && *it == x);
- if(flag)cout << 1 << '\n';
- else cout << 0 << '\n';
- }
- return 0;
- }
我们可以将分出的组别用v[N]来记录,将同一组存入同一个v[N]中去,从而转化为背包问题
dp[i][j]表示到i组为止,总重量为j的最大价值
- #include
- using namespace std;
- const int N = 2e3 + 10;
- vector
int, int>> v[N]; - int n, m, a, b, c, dp[N][N];
- int main()
- {
- cin >> m >> n;
- for(int i = 1; i <= n; i ++)
- {
- cin >> a >> b >> c;
- v[c].push_back({a, b});
- }
- for(int i = 1; i <= n; i ++)
- {
- for(int j = 0; j <= m; j ++)
- {
- dp[i][j] = dp[i - 1][j];
- for(auto k : v[i])
- if(j >= k.first)dp[i][j] = max(dp[i][j], dp[i - 1][j - k.first] + k.second);
- }
- }
- cout << dp[n][m];
- return 0;
- }