目录
以下安装教程为基于Linux系统,cuda版本为11.3.109、驱动530.30.02
conda create -n rapids python=3.9
conda activate rapids
安装官网:Installation Guide - RAPIDS Docs

pip install --default-time=300 --extra-index-url=https://pypi.nvidia.com cuml-cu11
到这里,我们就安装完成了。但是如果要使用jupter笔记本,我们继续安装。
pip install ipykernel
python -m ipykernel install --name rapids
如果安装错了运行如下命令删除内核
jupyter kernelspec remove rapids
安装后,刷新网页即可看见新的内核的jupter笔记本

至此,jupter笔记本的环境也安装好了。
先安装基础的机器学习库
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-learn
- from sklearn.model_selection import train_test_split
- from sklearn.neighbors import KNeighborsClassifier
- from sklearn.metrics import accuracy_score
- import numpy as np
- import time
-
- X = np.random.random((1000000,70))
- y = np.random.randint(0,2,1000000)
-
- # 分割数据为训练集和测试集
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
-
- # 初始化KNN分类器。这里选择邻居数为3。
- knn = KNeighborsClassifier(n_neighbors=20)
-
- # 使用训练数据拟合模型
- start_time = time.time() # 记录开始时间
- knn.fit(X_train, y_train)
-
- # 进行预测
- y_pred = knn.predict(X_test)
- end_time = time.time() # 记录结束时间
- elapsed_time = end_time - start_time # 计算程序运行时间,单位为秒
- # 将秒数转换为小时、分钟和秒数
- hours = int(elapsed_time // 3600)
- minutes = int((elapsed_time % 3600) // 60)
- seconds = int(elapsed_time % 60)
- print(f"程序运行时间:{hours}小时 {minutes}分钟 {seconds}秒\n")
-
- # 评估预测的准确性
- accuracy = accuracy_score(y_test, y_pred)
- print(f"Accuracy: {accuracy:.2f}")
运行时间

API查询链接: Welcome to cuML’s documentation! — cuml 23.08.00 documentation
点击右上角小放大镜,然后输入sklearn中KNN算法的API名称,即可有相关示例

- from sklearn.model_selection import train_test_split
- # from sklearn.neighbors import KNeighborsClassifier
- from cuml.neighbors import KNeighborsClassifier
-
- from sklearn.metrics import accuracy_score
- import numpy as np
- import time
-
- X = np.random.random((1000000,70))
- y = np.random.randint(0,2,1000000)
-
- # 分割数据为训练集和测试集
- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
-
- # 初始化KNN分类器。这里选择邻居数为3。
- knn = KNeighborsClassifier(n_neighbors=20)
-
- # 使用训练数据拟合模型
- start_time = time.time() # 记录开始时间
- knn.fit(X_train, y_train)
-
- # 进行预测
- y_pred = knn.predict(X_test)
- end_time = time.time() # 记录结束时间
- elapsed_time = end_time - start_time # 计算程序运行时间,单位为秒
- # 将秒数转换为小时、分钟和秒数
- hours = int(elapsed_time // 3600)
- minutes = int((elapsed_time % 3600) // 60)
- seconds = int(elapsed_time % 60)
- print(f"程序运行时间:{hours}小时 {minutes}分钟 {seconds}秒\n")
-
-
- # 评估预测的准确性
- accuracy = accuracy_score(y_test, y_pred)
- print(f"Accuracy: {accuracy:.2f}")
运行时间
