目录






- .........................................................................
- %%
- %对保存的多张图片读取并调用WTMM方法求图像的多重分形谱,对得到的结果保存其特征值
- if sel == 1
- k = 1;
-
- for i=1:2*n1*n2;
-
- if i<=n1*n2
- k = i;
- folder = 'save_images\1\';
- lists = dir('save_images\1\*.jpg');
- end
-
- if i<=2*n1*n2 & i>n1*n2
- k = i - n1*n2;
- folder = 'save_images\2\';
- lists = dir('save_images\2\*.jpg');
- end
-
-
- i
- %read an image
- I = imread(fullfile(folder,lists(k).name));
- %调用分形函数
- [qt,rt,ft,fft,Dt,feature_data] = func_Wavelet_multifractal(I);
- q{i} = qt;
- r{i} = rt;
- f{i} = ft;
- ff{i} = fft;
- D{i} = Dt;
- Feature{i} = feature_data;
- end
-
- save result.mat q r f ff D Feature
-
- K = 120;
- figure;
- plot(r{K},f{K},'-r>',...
- 'LineWidth',1,...
- 'MarkerSize',6,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor',[0.9,0.9,0.0]);
- xlabel('奇异指数a');
- ylabel('多重分行谱f(a)')
- grid on;
-
- figure;
- plot(q{K}+2,D{K},'-r>',...
- 'LineWidth',1,...
- 'MarkerSize',6,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor',[0.9,0.9,0.0]);
- xlabel('q');
- ylabel('D(q)')
- grid on;
-
- figure
- plot(q{K},r{K},'-r>',...
- 'LineWidth',1,...
- 'MarkerSize',6,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor',[0.9,0.9,0.0]);
- title('q和阿尔法a');
- xlabel('权重因子q');
- ylabel('奇异指数a');
- grid on;
-
- figure;
- plot(q{K},f{K},'-r>',...
- 'LineWidth',1,...
- 'MarkerSize',6,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor',[0.9,0.9,0.0]);
- title('q和f(a) ');
- xlabel('权重因子q');
- ylabel('多重分行谱f(a)');
- grid on;
- end
-
-
-
-
- %%
- %调用分类器对特征参数进行分类
- if sel == 0
- load result.mat %q r f ff Feature
-
- K = 120;
- figure;
- plot(r{K},f{K},'-r>',...
- 'LineWidth',1,...
- 'MarkerSize',6,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor',[0.9,0.9,0.0]);
- xlabel('奇异指数a');
- ylabel('多重分行谱f(a)')
- grid on;
-
- figure;
- plot(q{K}+2,D{K},'-r>',...
- 'LineWidth',1,...
- 'MarkerSize',6,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor',[0.9,0.9,0.0]);
- xlabel('q');
- ylabel('D(q)')
- grid on;
-
- figure
- plot(q{K},r{K},'-r>',...
- 'LineWidth',1,...
- 'MarkerSize',6,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor',[0.9,0.9,0.0]);
- title('q和阿尔法a');
- xlabel('权重因子q');
- ylabel('奇异指数a');
- grid on;
-
- figure;
- plot(q{K},f{K},'-r>',...
- 'LineWidth',1,...
- 'MarkerSize',6,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor',[0.9,0.9,0.0]);
- title('q和f(a) ');
- xlabel('权重因子q');
- ylabel('多重分行谱f(a)');
- grid on;
-
-
-
-
- for i = 1:length(Feature)
- P(i) = Feature{i}(3);
- end
-
- T = [1*ones(1,length(Feature)/2),2*ones(1,length(Feature)/2)];
-
- t1 = clock; %计时开始
- net = fitnet(65);
- net.trainParam.epochs = 1000; %设置训练次数
- net.trainParam.goal = 0.0001; %设置性能函数
- net.trainParam.show = 1; %每10显示
- net.trainParam.Ir = 0.005; %设置学习速率
- net = train(net,P,T); %训练BP网络
- datat = etime(clock,t1);
- Nets = net;
- view(Nets);
- figure;
- plot(P,'b-*');
-
- y = sim(net,P);
-
- figure;
- stem(y,'-bs',...
- 'LineWidth',1,...
- 'MarkerSize',6,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor',[0.9,0.0,0.0]);
- hold on
- plot(T,'-mo',...
- 'LineWidth',1,...
- 'MarkerSize',6,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor',[0.5,0.9,0.0]);
- hold on
- legend('预测数据','实际数据');
- title('输出1为第一类,输出2为第二类(即可对比实际的健康部分和肿瘤部分)');
-
-
- disp('预测正确率');
- error = 0;
- for i = 1:length(y)
- if i <= length(y)/2
- if y(i) > 1.5
- error = error + 1;
- end
- else
- if y(i) < 1.5
- error = error + 1;
- end
- end
- end
- 1-error/length(y)
- end
- 17_003m
基于WTMM算法的图像多重分形谱计算是一种利用小波变换模极大值(WTMM)方法,对图像进行多重分形分析的方法。下面将详细介绍这种方法的原理和数学公式。
分形理论是一种研究自然界中不规则、复杂现象的数学工具,而多重分形则是分形理论的一个重要分支,用于描述具有不同奇异程度的分形结构。在图像处理中,多重分形分析可以帮助我们更好地理解图像的纹理、边缘等特征,以及它们在不同尺度下的表现。
WTMM算法是一种基于小波变换模极大值的方法,用于计算图像的多重分形谱。该方法主要利用小波变换对图像进行多尺度分解,提取出图像在不同尺度下的边缘信息。然后,通过对这些边缘信息进行统计分析,计算出图像的多重分形谱。
具体来说,WTMM算法的计算步骤如下:
WTMM算法的数学公式主要包括以下几个部分:
对图像f(x,y)进行二维小波变换,可以得到一系列小波系数Wf(x,y),其中下标f表示小波变换的类型,如Haar小波、Daubechies小波等。二维小波变换的数学公式可以表示为:
Wf(x,y)=∫∫f(u,v)ψf(x−u,y−v)dudvWf(x,y) = \int \int f(u,v) \psi_f(x-u,y-v) du dvWf(x,y)=∫∫f(u,v)ψf(x−u,y−v)dudv
其中,ψf(x,y)是小波基函数。
对每个尺度下的小波系数进行模极大值检测,可以提取出图像的边缘信息。具体地,对于每个像素位置(x,y),如果满足以下两个条件:
|Wf(x,y)|≥|Wf(x+1,y)|,|Wf(x,y)|≥|Wf(x−1,y)|,|Wf(x,y)|≥|Wf(x,y+1)|,|Wf(x,y)|≥|Wf(x,y−1)||W_f(x,y)| \geq |W_f(x+1,y)|, |W_f(x,y)| \geq |W_f(x-1,y)|,|W_f(x,y)| \geq |W_f(x,y+1)|, |W_f(x,y)| \geq |W_f(x,y-1)||Wf(x,y)|≥|Wf(x+1,y)|,|Wf(x,y)|≥|Wf(x−1,y)|,|Wf(x,y)|≥|Wf(x,y+1)|,|Wf(x,y)|≥|Wf(x,y−1)|
则称该像素位置为模极大值点。
通过对提取出的边缘信息进行统计分析,可以计算出图像的多重分形谱。具体地,可以用以下公式计算多重分形谱:
α=limε→0log|Wf(x,y)|logε\alpha = \lim_{\varepsilon \to 0} \frac{\log |W_f(x,y)|}{\log \varepsilon}α=limε→0logεlog|Wf(x,y)|
其中,ε是小波变换的尺度参数,α是奇异指数,用于描述图像在不同尺度下的奇异程度。通过对所有模极大值点的奇异指数进行统计分析,可以得到图像的多重分形谱。
OOOOO
OOO
O