• 复习Day03:数组part03:76 . 最小覆盖子串、438. 找到z字符串z中所有字母异位词


    之前的blog链接:https://blog.csdn.net/weixin_43303286/article/details/131700482?spm=1001.2014.3001.5501

    我用的方法是在leetcode再过一遍例题,明显会的就复制粘贴,之前没写出来就重写,然后从拓展题目中找题目来写。辅以Labuladong的文章看。然后刷题不用CLion了,使用leetcode自带模拟面试环境。

    76 . 最小覆盖子串

    leetcode链接:https://leetcode.cn/problems/minimum-window-substring/?envType=study-plan-v2&envId=top-100-liked

    给你一个字符串 s 、一个字符串 t 。
    返回 s 中涵盖 t 所有字符的最小子串。
    如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 "" 。
    
     
    
    注意:
    
    对于 t 中重复字符,我们寻找的子字符串中该字符数量必须不少于 t 中该字符数量。
    如果 s 中存在这样的子串,我们保证它是唯一的答案。
     
    
    示例 1:
    
    输入:s = "ADOBECODEBANC", t = "ABC"
    输出:"BANC"
    解释:最小覆盖子串 "BANC" 包含来自字符串 t 的 'A''B''C'。
    示例 2:
    
    输入:s = "a", t = "a"
    输出:"a"
    解释:整个字符串 s 是最小覆盖子串。
    示例 3:
    
    输入: s = "a", t = "aa"
    输出: ""
    解释: t 中两个字符 'a' 均应包含在 s 的子串中,
    因此没有符合条件的子字符串,返回空字符串。
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28

    这题的意思就是在s中找到含有t所有字母的最小长度的子串。滑动窗口的思路是这样:

    1、我们在字符串 S 中使用双指针中的左右指针技巧,初始化 left = right = 0,把索引左闭右开区间 [left, right) 称为一个「窗口」。

    2、我们先不断地增加 right 指针扩大窗口 [left, right),直到窗口中的字符串符合要求(包含了 T 中的所有字符)。

    3、此时,我们停止增加 right,转而不断增加 left 指针缩小窗口 [left, right),直到窗口中的字符串不再符合要求(不包含 T 中的所有字符了)。同时,每次增加 left,我们都要更新一轮结果。

    4、重复第 2 和第 3 步,直到 right 到达字符串 S 的尽头。

    第 2 步相当于在寻找一个「可行解」,然后第 3 步在优化这个「可行解」,最终找到最优解。

    最终代码:

    class Solution {
    public:
        string minWindow(string s, string t) {
        unordered_map<char, int> need, window;
        for (char c : t) need[c]++;
    
        int left = 0, right = 0;
        int valid = 0;
        // 记录最小覆盖子串的起始索引及长度
        int start = 0, len = INT_MAX;
        while (right < s.size()) {
            // c 是将移入窗口的字符
            char c = s[right];
            // 扩大窗口
            right++;
            // 进行窗口内数据的一系列更新
            if (need.count(c)) {
                window[c]++;
                if (window[c] == need[c])
                    valid++;
            }
    
            // 判断左侧窗口是否要收缩
            while (valid == need.size()) {
                // 在这里更新最小覆盖子串
                if (right - left < len) {
                    start = left;
                    len = right - left;
                }
                // d 是将移出窗口的字符
                char d = s[left];
                // 缩小窗口
                left++;
                // 进行窗口内数据的一系列更新
                if (need.count(d)) {
                    if (window[d] == need[d])
                        valid--;
                    window[d]--;
                }                    
            }
        }
        // 返回最小覆盖子串
        return len == INT_MAX ?
            "" : s.substr(start, len);
    }
    
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47

    438. 找到字符串中所有字母异位词

    给定两个字符串 s 和 p,找到 s 中所有 p 的 异位词 的子串,返回这些子串的起始索引。
    不考虑答案输出的顺序。
    
    异位词 指由相同字母重排列形成的字符串(包括相同的字符串)。
    
     
    
    示例 1:
    
    输入: s = "cbaebabacd", p = "abc"
    输出: [0,6]
    解释:
    起始索引等于 0 的子串是 "cba", 它是 "abc" 的异位词。
    起始索引等于 6 的子串是 "bac", 它是 "abc" 的异位词。
     示例 2:
    
    输入: s = "abab", p = "ab"
    输出: [0,1,2]
    解释:
    起始索引等于 0 的子串是 "ab", 它是 "ab" 的异位词。
    起始索引等于 1 的子串是 "ba", 它是 "ab" 的异位词。
    起始索引等于 2 的子串是 "ab", 它是 "ab" 的异位词。
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    这里差一个unordered_map查找键值对时,find和count的区别:find一般需要获取具体指,count则着重于判断在不在。

    image

    image

    最终代码:

    class Solution {
    public:
        vector<int> findAnagrams(string s, string t) {
        unordered_map<char, int> need, window;
        for (char c : t) need[c]++;
    
        int left = 0, right = 0;
        int valid = 0;
        vector<int> res; // 记录结果
        while (right < s.size()) {
            char c = s[right];
            right++;
            // 进行窗口内数据的一系列更新
            if (need.count(c)) {
                window[c]++;
                if (window[c] == need[c]) 
                    valid++;
            }
            // 判断左侧窗口是否要收缩
            while (right - left >= t.size()) {
                // 当窗口符合条件时,把起始索引加入 res
                if (valid == need.size())
                    res.push_back(left);
                char d = s[left];
                left++;
                // 进行窗口内数据的一系列更新
                if (need.count(d)) {
                    if (window[d] == need[d])
                        valid--;
                    window[d]--;
                }
            }
        }
        return res;
    }
    
    };
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
  • 相关阅读:
    物联网协议MQTT
    【经验分享】在Kylin桌面版操作系统中配置openGauss的ODBC数据源
    17、读写锁(ReadWriteLock(里面有读锁和写锁))
    深度解密 OpenMLDB 毫秒级实时在线特征计算引擎
    perl 对 xml 和 json 的简单应用
    阿里云OSS简单应用
    STM32 | GPIO口的普通与复用如何配置与用法,本文降从最底层教你如何查看手册运用寄存器来实现GPIO口的配置
    el-menu-item动态路径解决方案
    【元宇宙欧米说】蓝魂,web3专用linktree
    Mysql中的进阶增删查改操作(二)
  • 原文地址:https://blog.csdn.net/weixin_43303286/article/details/133273292