作者:明明如月学长, CSDN 博客专家,大厂高级 Java 工程师,《性能优化方法论》作者、《解锁大厂思维:剖析《阿里巴巴Java开发手册》》、《再学经典:《EffectiveJava》独家解析》专栏作者。
热门文章推荐:

一天程序员小明跑到师兄面前说 :“师兄,我看到一个很诡异的现象,百思不得其解”。
师兄说:“莫慌,你且慢慢说来”
程序员小明说道:“我放到 Map 中的数据还在,但是怎么也取不出来了…”
师兄,于是帮小明看了他的代码,发现了很多不为人知的秘密…
小明 定义了一个 Player 作为 Map 的 key :
public class Player {
private String name;
public Player(String name) {
this.name = name;
}
// 省略了getter和setter方法
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (!(o instanceof Player)) {
return false;
}
Player player = (Player) o;
return name.equals(player.name);
}
@Override
public int hashCode() {
return name.hashCode();
}
}
Player 类在 name 属性上有一个 setter ,所以它是可变的。此外,hashCode() 方法使用 name 属性来计算哈希码。这意味着更改 Player 对象的名字可以使它具有不同的哈希码。
此时,有懂行的小伙伴已经看出了一点端倪
小明写了如下代码,一切看起来还挺正常:
Map<Player, Integer> myMap = new HashMap<>();
Player kai = new Player("Kai");
Player tom = new Player("Tom");
Player amanda = new Player("Amanda");
myMap.put(kai, 42);
myMap.put(amanda, 88);
myMap.put(tom, 200);
assertTrue(myMap.containsKey(kai));
接下来,让小明将玩家 kai 的名字从 “Kai” 更改为 “Eric”,然后懵逼了…
// 将Kai的名字更改为Eric
kai.setName("Eric");
assertEquals("Eric", kai.getName());
Player eric = new Player("Eric");
assertEquals(eric, kai);
// 现在,map中既不包含Kai也不包含Eric:
assertFalse(myMap.containsKey(kai));
assertFalse(myMap.containsKey(eric));
assertNull(myMap.get(kai));
assertNull(myMap.get(eric));
如上面的测试所示,更改 kai 的名字为 “Eric” 后,无法再使用 kai 或 eric 来检索 “Eric” -> 42 的 Entry。
但,对象 Player(“Eric”) 还存在于 map 中作为一个键:
// 然而 Player("Eric") 以依然存在:
long ericCount = myMap.keySet()
.stream()
.filter(player -> player.getName()
.equals("Eric"))
.count();
assertEquals(1, ericCount);
小明,百思不得其姐?
给你 2 分钟的时间,是否可以清楚地解释其中的缘由?如果不能,说明你对 HashMap 的了解还不够。
这部分内容可能略显枯燥,如果不喜欢可以跳过,看第四部分。
java.util.HashMap#put
/**
* Associates the specified value with the specified key in this map.
* If the map previously contained a mapping for the key, the old
* value is replaced.
*
* @param key key with which the specified value is to be associated
* @param value value to be associated with the specified key
* @return the previous value associated with key, or
* null if there was no mapping for key.
* (A null return can also indicate that the map
* previously associated null with key.)
*/
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
java.util.HashMap#hash
/**
* Computes key.hashCode() and spreads (XORs) higher bits of hash
* to lower. Because the table uses power-of-two masking, sets of
* hashes that vary only in bits above the current mask will
* always collide. (Among known examples are sets of Float keys
* holding consecutive whole numbers in small tables.) So we
* apply a transform that spreads the impact of higher bits
* downward. There is a tradeoff between speed, utility, and
* quality of bit-spreading. Because many common sets of hashes
* are already reasonably distributed (so don't benefit from
* spreading), and because we use trees to handle large sets of
* collisions in bins, we just XOR some shifted bits in the
* cheapest possible way to reduce systematic lossage, as well as
* to incorporate impact of the highest bits that would otherwise
* never be used in index calculations because of table bounds.
*/
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
该方法的主要目的是减少哈希碰撞和更好地分配哈希桶。高 16 位和低 16 位进行 XOR 操作,可以使得原本高 16位产生的影响,也能够反映到低 16 位中来。这是一种简单、快速但效果显著的方法来减少哈希碰撞。
该方法配合哈希表的“幂次掩码”(power-of-two masking)能够更好的分散哈希值,避免大量的哈希值冲突在一起,从而提高哈希表的性能。
java.util.HashMap#putVal
/**
* Implements Map.put and related methods.
*
* @param hash hash for key
* @param key the key
* @param value the value to put
* @param onlyIfAbsent if true, don't change existing value
* @param evict if false, the table is in creation mode.
* @return previous value, or null if none
*/
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
//定义了一个用于表示哈希表的数组 tab,一个节点 p 用于指向特定的哈希桶,
// 以及两个整型变量 n 和 i 用于存储哈希表的大小和计算的索引位置。
Node<K,V>[] tab; Node<K,V> p; int n, i;
//如果哈希表未初始化或其长度为0,它将调用 resize() 方法来初始化或扩容哈希表。
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
//计算键的哈希值应该映射到的索引,并检查该位置是否为空。
//如果为空,则创建一个新节点并将其置于该位置。
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
//如果找到了一个非空桶,我们进入一个更复杂的流程来找到正确的节点或创建一个新节点。
Node<K,V> e; K k;
//检查第一个节点是否有相同的哈希和键。
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
e = p;
//如果首个节点是一个红黑树节点,则调用 putTreeVal 方法来处理。
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
//如果桶中的节点是链表结构,这部分代码将遍历链表,寻找一个具有相同哈希和键的节点
//或者在链表的尾部添加一个新节点。
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
//如果找到了一个存在的节点,则根据 onlyIfAbsent 参数来决定是否要更新值,然后返回旧值。
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
//增加 modCount 来表示 HashMap 被修改了,并检查当前大小是否超过了阈值来决定是否要调整大小
++modCount;
if (++size > threshold)
resize();
//最后调用 afterNodeInsertion 方法(它在 HashMap 中是一个空方法,但在其子类 LinkedHashMap 中是有定义的),
//然后返回 null 来表示没有旧值。
afterNodeInsertion(evict);
return null;
}
putVal 方法是一个非常核心和复杂的方法,它处理了很多细节,包括初始化哈希表,确定正确的桶,处理链表和红黑树结构,以及正确的插入或更新节点的值。
一句话:找到合适的位置,放到该位置上。
既然是 containsKey 不符合预期,我们就看下它的逻辑:
java.util.HashMap#containsKey
/**
* Returns true if this map contains a mapping for the
* specified key.
*
* @param key The key whose presence in this map is to be tested
* @return true if this map contains a mapping for the specified
* key.
*/
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
同上
java.util.HashMap#getNode
/**
* Implements Map.get and related methods.
*
* @param hash hash for key
* @param key the key
* @return the node, or null if none
*/
final Node<K,V> getNode(int hash, Object key) {
//首先定义了一些变量,包括哈希表数组 tab、要查找的首个节点 first、
//一个辅助节点 e、数组的长度 n 和一个泛型类型的 k 用于暂存 key。
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//这里首先检查哈希表是否为空或长度是否大于 0 ,然后根据 hash 值找到对应的桶。
//(n - 1) & hash 这段代码是为了将 hash 值限制在数组的边界内,确保它能找到一个有效的桶。
if ((tab = table) != null && (n = tab.length) > 0 &&(first = tab[(n - 1) & hash]) != null) {
//检查第一个节点是否就是我们要找的节点,这里比较了 hash 值和 key。
//注意这里首先通过 == 来比较引用,如果失败了再通过 equals 方法来比较值,这样可以提高效率。
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
// 如果第一个节点不是我们要找的,就检查下一个节点是否存在。
if ((e = first.next) != null) {
//如果首个节点是一个树节点(即这个桶已经转换为红黑树结构),则调用 getTreeNode 方法来获取节点。
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//这是一个 do-while 循环,用来遍历链表结构的桶中的每一个节点,直到找到匹配的节点或到达链表的尾部。
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
//如果没有找到匹配的节点,则返回 null。
return null;
}
getNode 方法是 HashMap 中用于获取指定键对应的节点的核心方法。它首先使用哈希值来定位到正确的桶,然后在桶内使用链表或红黑树(如果桶中的元素过多时会转换为红黑树来提高性能)来查找正确的节点。
它充分利用了 Java 的多态特性和简洁的循环结构来保证代码的简洁和性能。
一句话:找到位置,取出来,判断是否存在
java.util.HashMap#get
/**
* Returns the value to which the specified key is mapped,
* or {@code null} if this map contains no mapping for the key.
*
* More formally, if this map contains a mapping from a key
* {@code k} to a value {@code v} such that {@code (key==null ? k==null :
* key.equals(k))}, then this method returns {@code v}; otherwise
* it returns {@code null}. (There can be at most one such mapping.)
*
*
A return value of {@code null} does not necessarily
* indicate that the map contains no mapping for the key; it's also
* possible that the map explicitly maps the key to {@code null}.
* The {@link #containsKey containsKey} operation may be used to
* distinguish these two cases.
*
* @see #put(Object, Object)
*/
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
逻辑和 containsKey 一致,只是 getNode 之后,如果为 null 返回 null, 否则返回 e.value。
一句话:找到位置,取出来
注:下面的作图可能并不严谨,只是帮助理解,如有偏差请勿较真。
师兄给小明同学画图讲解了一番…
Map<Player, Integer> myMap = new HashMap<>();
Player kai = new Player("Kai");
Player tom = new Player("Tom");
Player amanda = new Player("Amanda");
myMap.put(kai, 42);
myMap.put(tom, 200);
myMap.put(amanda, 88);
assertTrue(myMap.containsKey(kai));

其中绿色部分是键对象(注意是对象),红色部分是值。
有同学可能说,这里为为啥有个 Eric ? 这里是假设在 map 中放入一个 eric ,它的目标位置。
敲黑板:位置和 Key 对象的 hashCode 有关系和 Value 无关。
// 将Kai的名字更改为Eric
kai.setName("Eric");
assertEquals("Eric", kai.getName());

敲黑板:Map 并没有执行任何的写操作,因此虽然 kai 的 name 被修改为了 Eric ,但是 kai 的位置并没有发生变化。
Player eric = new Player("Eric");
assertEquals(eric, kai);
// 现在,map中既不包含Kai也不包含Eric:
assertFalse(myMap.containsKey(kai));
assertFalse(myMap.containsKey(eric));
当执行 myMap.containsKey(kai) 时,会根据其 name 即 Eric 去判断是否有该 key 是否存在。

正如第一张图所示,此时真正的 Eric 的位置并没有元素,因此返回 false。
当执行 assertEquals(eric, kai); 时,由于重写了 equals 方法,name 相等即为相等,所以两者相等。
当执行 myMap.containsKey(eric) 时,和 myMap.containsKey(kai) 效果等价。
因此,永远不要修改 HashMap 中的键,避免出现一些奇奇怪怪的现象,奇怪的现象远不止前文所示。
修改 HashMap 的键可能会导致的几个问题:
既然,永远不要修改 HashMap 的 Key ,比如直接让键类定义成不可变类型就好了。
优化如下:
public final class Player {
// 不允许修改
private final String name;
public Player(String name) {
this.name = name;
}
public String getName() {
return name;
}
// 注意,我们没有提供setter方法
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (!(o instanceof Player)) {
return false;
}
Player player = (Player) o;
return name.equals(player.name);
}
@Override
public int hashCode() {
return name.hashCode();
}
}
当自定义对象作 Map 的键时,一定要根据实际的场景慎重考虑是否要重写 equals 和 hashCode 方法。
不恰当重写 equals 和 hashCode 方法可能会导致一些奇奇怪怪的问题,以后用另外一篇来讨论。比如两个 Key 对象,分别对应两个不同的值,导致后一个值覆盖前一个值的"问题" (其实也未必是问题)。
public class Player {
private String name;
public Player(String name) {
this.name = name;
}
// 省略了getter和setter方法
@Override
public boolean equals(Object o) {
if (this == o) {
return true;
}
if (!(o instanceof Player)) {
return false;
}
Player player = (Player) o;
return name.equals(player.name);
}
@Override
public int hashCode() {
return name.hashCode();
}
}
Map<Player, Integer> myMap = new HashMap<>();
Player kai1 = new Player("Kai");
Player kai2 = new Player("Kai");
myMap.put(kai1, 42);
// 此时 kai2 覆盖了 kai1 的值
myMap.put(kai2, 88);
assertEquals(88,(int)myMap.get(kai1));
assertEquals(88,(int)myMap.get(kai2));
不重写 hashCode 和 equals 方法:
public class Player {
private String name;
public Player(String name) {
this.name = name;
}
// 省略了getter和setter方法
}
验证:
Map<Player, Integer> myMap = new HashMap<>();
Player kai1 = new Player("Kai");
Player kai2 = new Player("Kai");
myMap.put(kai1, 42);
myMap.put(kai2, 88);
assertEquals(42,(int)myMap.get(kai1));
assertEquals(88,(int)myMap.get(kai2));
每一个问题背后都是一个绝佳的学习机会。每一个奇奇怪怪的问题背后都有很多知识盲点。
希望大家可以抓住每一个问题知其然,知其所然,不断精进技术。
创作不易,如果本文对你有帮助,欢迎点赞、收藏加关注,你的支持和鼓励,是我创作的最大动力。
欢迎加入我的知识星球,知识星球ID:15165241 (已经经营 3年多)一起交流学习。
https://t.zsxq.com/Z3bAiea 申请时标注来自CSDN。