• 数据结构——带头双向循环链表


    一、带头双向循环链表的定义

    带头双向循环链表:结构最复杂,一般用在单独存储数据。实际中使用的链表数据结构,都是带头双向循环链表。另外这个结构虽然结构复杂,但是使用代码实现以后会发现结构会带来很多优势。
    带头双向循环链表包括一个带有哨兵位的头节点,该节点既可以作为链表的第一个节点,也可以作为链表的最后一个节点.
    这种链表的特点是每个节点都有两个指针,一个指向前一个节点,一个指向后一个节点,这样就可以实现双向遍历。
    同时,链表的最后一个节点的后继指针指向头节点,形成了循环的结构。这样,我们可以在任意一个节点上进行前后移动,插入和删除操作,而不需要像单链表那样遍历整个链表去找到前一个节点。
    需要注意的是,带头双向循环链表为空并不意味着没有一个节点,而是只有一个带哨兵位的头节点,所以在使用之前需要对链表进行初始化。
    
    • 1
    • 2
    • 3
    • 4
    • 5

    二、带头双向循环链表的实现

    2.1初始化创建带头双向循环链表的节点

    typedef struct ListNode
    {
    	Listdatatype data;
    	struct ListNode* next;
    	struct ListNode* prev;
    }LTNode;
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    带头双向循环链表示意图

    在创建带头双向循环链表的节点中比之前单链表节点的创建多了一个struct ListNode* prev;结构体指针,目的在与存储前一个节点的地址,便于将整个链表连在一起。

    2.2申请新节点

    //创建新节点
    LTNode* BuyLTNode(Listdatatype x)
    {
    	LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));
    	if (newnode == NULL)
    	{
    		perror("malloc fail");
    		return NULL;
    	}
    	newnode->data = x;
    	newnode->next = NULL;
    	newnode->prev = NULL;
    	return newnode;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    动态申请内存结点,函数返回的是一个指针类型,用malloc开辟一个LTNode大小的空间,并用node指向这个空间,再判断是否为空,如为空就perror,显示错误信息。反之则把需要存储的数据x存到newnode指向的空间里面,并且把newnode->next,newnode->prev置为空。

    2.3节点的初始化

    LTNode* LTInit()
    {
    	LTNode* phead = BuyLTNode(-1);
    	phead->next = phead;
    	phead->prev = phead;
    
    	return phead;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    通过动态内存申请节点,申请了一个头节点。并且将它的phead->next ,phead->prev 都置为phead,得到如下图的头节点。
    哨兵位的头节点

    2.4带头双向循环链表的尾插

    void LTPushBack(LTNode* phead, Listdatatype x)
    {
    	assert(phead);
    	LTNode* tail = phead->prev;
    	LTNode* newnode = BuyLTNode(x);
    
    	tail->next = newnode;
    	newnode->prev = tail;
    	newnode->next = phead;
    	phead->prev = newnode;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    尾插节点的方法:首先通过内存申请一个节点, 然后改变四个指针的指向,便可以完成带头双向循环链表的尾插。
    在这里插入图片描述
    在这里插入图片描述

    2.5带头双向循环链表的头插

    void LTFrontBack(LTNode* phead, Listdatatype x)
    {
    	assert(phead);
    	LTNode* newnode = BuyLTNode(x);
    	newnode->next = phead->next;
    	phead->next->prev = newnode;
    	phead->next = newnode;
    	newnode->prev = phead;
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    在这里插入图片描述
    在这里插入图片描述

    2.6判空函数

    bool LTEmpty(LTNode* phead)
    {
    	assert(phead);
    
    	return phead->next == phead;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    2.7带头双向循环链表的打印函数

    //打印
    void LTPrint(LTNode* phead)
    {
    	LTNode* cur = phead->next;
    	printf("guard<->");
    	while (cur != phead)
    	{
    		printf("%d<->", cur->data);
    		cur = cur->next;
    	}
    	printf("\n");
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    2.8带头双向循环链表的尾删

    //尾删
    void LTPopBack(LTNode* phead)
    {
    	assert(phead);
    	assert(! LTEmpty(phead));
    	LTNode* tail = phead->prev;
    	LTNode* tailprev = tail->prev;
    	//改变指针的指向
    	free(tail);
    	tailprev->next = phead;
    	phead->prev = tailprev;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    在这里插入图片描述

    2.9带头双向循环链表的头删

    void LTPopFront(LTNode* phead)
    {
    	assert(phead);
    	assert(!LTEmpty(phead));
    	LTNode* first = phead->next;
    	LTNode* firstnext = first->next;
    	free(first);
    	phead->next = firstnext;
    	firstnext->prev = phead;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    在这里插入图片描述

    2.11带头双向循环链表的在pos之前插入

    void LTInsert(LTNode* pos, Listdatatype x)
    {
    	assert(pos);
    	LTNode* newnode = BuyLTNode(x);
    	LTNode* posprev = pos->prev;
    	posprev->next = newnode;
    	newnode->prev = posprev;
    	newnode->next = pos;
    	pos->prev = newnode;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    在这里插入图片描述

    2.12带头双向循环链表的在pos位置删除

    void LTErase(LTNode* pos)
    {
    	assert(pos);
    	LTNode* posprev = pos->prev;
    	LTNode* posnext = pos->next;
    	posprev->next = posnext;
    	posnext->prev = posprev;
    	free(pos);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    在这里插入图片描述

    2.14带头双向循环链表的销毁

    //销毁
    LTNode* LTDestory(LTNode* phead)
    {
    	LTNode* cur = phead->next;
    	while (cur != phead)
    	{
    		LTNode* next = cur->next;
    		free(cur);
    		cur = next;
    	}
    	free(phead);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    三、完整代码

    3.1LIst.h

    #pragma once
    #include
    #include
    #include
    #include
    typedef int  Listdatatype;
    typedef struct ListNode
    {
    	Listdatatype data;
    	struct ListNode* next;
    	struct ListNode* prev;
    }LTNode;
    
    //初始化
    LTNode* LTInit();
    
    //尾插
    void LTPushBack(LTNode* phead, Listdatatype x);
    
    //尾删
    void LTPopBack(LTNode* phead);
    
    //头插
    void LTFrontBack(LTNode* phead, Listdatatype x);
    
    //头删
    void LTPopFront(LTNode* phead);
    
    //打印
    void LTPrint(LTNode* phead);
    
    //判空
    bool LTEmpty(LTNode* phead);
    
    //在pos之前插入
    void LTInsert(LTNode* pos, Listdatatype x);
    
    //在pos之前删除
    void LTErase(LTNode* pos);
    
    //寻找
    LTNode* LTFind(LTNode* phead, Listdatatype x);
    
    //销毁
    LTNode* LTDestory(LTNode* phead);
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45

    3.2List.c

    #define _CRT_SECURE_NO_WARNINGS 1
    #include"List.h"
    //创建新节点
    LTNode* BuyLTNode(Listdatatype x)
    {
    	LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));
    	if (newnode == NULL)
    	{
    		perror("malloc fail");
    		return NULL;
    	}
    	newnode->data = x;
    	newnode->next = NULL;
    	newnode->prev = NULL;
    	return newnode;
    }
    
    
    LTNode* LTInit()
    {
    	LTNode* phead = BuyLTNode(-1);
    	phead->next = phead;
    	phead->prev = phead;
    
    	return phead;
    }
    //尾插
    void LTPushBack(LTNode* phead, Listdatatype x)
    {
    	assert(phead);
    	LTNode* tail = phead->prev;
    	LTNode* newnode = BuyLTNode(x);
    
    	tail->next = newnode;
    	newnode->prev = tail;
    	newnode->next = phead;
    	phead->prev = newnode;
    }
    
    
    //头插
    void LTFrontBack(LTNode* phead, Listdatatype x)
    {
    	assert(phead);
    	LTNode* newnode = BuyLTNode(x);
    	newnode->next = phead->next;
    	phead->next->prev = newnode;
    	phead->next = newnode;
    	newnode->prev = phead;
    }
    
    //判空
    bool LTEmpty(LTNode* phead)
    {
    	assert(phead);
    
    	return phead->next == phead;
    }
    
    //打印
    void LTPrint(LTNode* phead)
    {
    	LTNode* cur = phead->next;
    	printf("guard<->");
    	while (cur != phead)
    	{
    		printf("%d<->", cur->data);
    		cur = cur->next;
    	}
    	printf("\n");
    }
    
    
    //尾删
    void LTPopBack(LTNode* phead)
    {
    	assert(phead);
    	assert(! LTEmpty(phead));
    	LTNode* tail = phead->prev;
    	LTNode* tailprev = tail->prev;
    	//改变指针的指向
    	free(tail);
    	tailprev->next = phead;
    	phead->prev = tailprev;
    }
    
    
    //头删
    void LTPopFront(LTNode* phead)
    {
    	assert(phead);
    	assert(!LTEmpty(phead));
    	LTNode* first = phead->next;
    	LTNode* firstnext = first->next;
    	free(first);
    	phead->next = firstnext;
    	firstnext->prev = phead;
    }
    
    
    //寻找
    LTNode* LTFind(LTNode* phead, Listdatatype x)
    {
    	assert(phead);
    	LTNode* cur = phead->next;
    	while (cur != phead)
    	{
    		if (cur->data == x)
    		{
    			return cur;
    		}
    		cur = cur->next;
    	}
    	return NULL;
    }
    
    
    
    //在pos之前插入
    void LTInsert(LTNode* pos, Listdatatype x)
    {
    	assert(pos);
    	LTNode* newnode = BuyLTNode(x);
    	LTNode* posprev = pos->prev;
    	posprev->next = newnode;
    	newnode->prev = posprev;
    	newnode->next = pos;
    	pos->prev = newnode;
    }
    
    在pos之前删除
    //void LTErase(LTNode* pos)
    //{
    //	assert(pos);
    //	LTNode* posprev = pos->prev;
    //	free(posprev);
    //	posprev->prev->next = pos;
    //	pos->prev = posprev->prev;
    //	
    //}
    
    
    //在pos位置删除
    void LTErase(LTNode* pos)
    {
    	assert(pos);
    	LTNode* posprev = pos->prev;
    	LTNode* posnext = pos->next;
    	posprev->next = posnext;
    	posnext->prev = posprev;
    	free(pos);
    }
    
    //销毁
    LTNode* LTDestory(LTNode* phead)
    {
    	LTNode* cur = phead->next;
    	while (cur != phead)
    	{
    		LTNode* next = cur->next;
    		free(cur);
    		cur = next;
    	}
    	free(phead);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165

    3.3test.c

    #define _CRT_SECURE_NO_WARNINGS 1
    #include"List.h"
    //void test1()
    //{
    //	LTNode* plist = LTInit();
    //	LTPushBack(plist, 1);
    //	LTPushBack(plist, 2);
    //	LTPushBack(plist, 3);
    //	LTPushBack(plist, 4);
    //	LTPrint(plist);
    //	LTPopBack(plist);
    //	LTPrint(plist);
    
    //}
    void test2()
    {
    	LTNode* plist = LTInit();
    	LTFrontBack(plist, 1);
    	LTFrontBack(plist, 2);
    	LTFrontBack(plist, 3);
    	LTFrontBack(plist, 4);
    	LTPrint(plist);
    	LTErase(3);
    	LTPrint(plist);
    }
    int main()
    {
    	//test1();
    	test2();
    	return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
  • 相关阅读:
    极光笔记 | 大语言模型插件
    Linux Shell脚本练习(一)
    生命在于学习——MSF初体验(一)
    多测师肖sir_高级金牌讲师_ui自动化po框架版本01
    父子进程、僵尸进程和孤儿进程
    防火墙基础实验配置
    计算机毕业设计ssm点餐系统平台l4fk2系统+程序+源码+lw+远程部署
    Mysql批量插入大量数据的方法
    使用 uni-app 开发项目,日期和时间如何格式化?
    前端性能优化——渲染优化
  • 原文地址:https://blog.csdn.net/qq_64034271/article/details/132760874