• OpenCV


    OpenCV学习报告

    读取图片和网络摄像头

    1.1 图片读取

    import cv2
    # read image
    img = cv2.imread("Resources/dnn.jpg")
    cv2.imshow("Output",img)
    cv2.waitKey(0)
    
    • 1
    • 2
    • 3
    • 4
    • 5

    在这里插入图片描述

    1.2 视频读取

    1.1.1 读取视频文件
    import cv2
    # read video
    cap = cv2.VideoCapture("Resources/test_video.mp4")
    while True:
       success,img = cap.read()
       cv2.imshow("Video",img)
       if cv2.waitKey(1) & 0xFF == ord('q'):
           break
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    在这里插入图片描述

    1.1.2读取网络摄像头
    import cv2
    # read webcam
    cap = cv2.VideoCapture(0)
    cap.set(3,640) #width
    cap.set(4,480) #height
    cap.set(10,100)
    
    while True:
       success,img = cap.read()
       cv2.imshow("Video",img)
       if cv2.waitKey(1) & 0xFF == ord('q'):
           break
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    在这里插入图片描述

    OpenCV基础功能

    import cv2
    import numpy as np
    # basic function
    img = cv2.imread("Resources/dnn.jpg")
    kernel = np.ones((5,5),np.uint8)
    
    # 灰度转换
    imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    # 图像模糊
    imgBlur = cv2.GaussianBlur(imgGray,(7,7),0)
    # 边缘检测
    imgCanny = cv2.Canny(img,100,100)
    # 膨胀
    imgDialation = cv2.dilate(imgCanny, kernel,iterations=1)
    # 腐蚀
    imgEroded = cv2.erode(imgDialation,kernel,iterations=1)
    
    # cv2.imshow("Output",img)
    cv2.imshow("Gray Image",imgGray)
    cv2.imshow("Blur Image",imgBlur)
    cv2.imshow("Blur Image",imgCanny)
    cv2.imshow("Dialation Image",imgDialation)
    cv2.imshow("Eroded Image",imgEroded)
    
    cv2.waitKey(0)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25

    在这里插入图片描述
    在这里插入图片描述

    调整、裁剪图像

    3.1 调整图像大小

    import cv2
    
    # resize image
    
    img = cv2.imread("Resources/lambo.PNG")
    print(img.shape)
    
    imgResize = cv2.resize(img,(300,200))
    print(imgResize.shape)
    
    cv2.imshow("Image",img)
    cv2.imshow("Image Resize",imgResize)
    
    
    cv2.waitKey(0)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    在这里插入图片描述

    3.2 裁剪图像

    import cv2
    
    img=cv2.imread("Resources/lambo.PNG")
    cv2.imshow('image',img)
    
    
    print(img.shape)#height,width,dpth
    
    
    crop_img=img[100:400,50:500]
    cv2.imshow('crop image',crop_img)
    
    cv2.waitKey(0)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14

    在这里插入图片描述

    图像上绘制形状和文本

    4.1 图像上绘制形状

    import cv2
    import numpy as np
    # shapes and texts
    img = np.zeros((512,512,3),np.uint8)
    cv2.imshow('oringin image',img)
    
    cv2.line(img,(0,0),(img.shape[1],img.shape[0]),(0,255,0),3)
    cv2.imshow('line image',img)
    
    cv2.rectangle(img,(0,0),(250,350),(0,0,255),2)
    cv2.imshow('rectangle image',img)
    
    cv2.circle(img,(400,500),30,(255,255,0),5)
    cv2.imshow('circle image',img)
    
    cv2.waitKey(0)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    在这里插入图片描述

    4.2图像上写文字

    import cv2
    import numpy as np
    
    img = np.zeros((512,512,3),np.uint8)
    cv2.imshow('oringin image',img)
    
    cv2.putText(img,"OPENCV",(300,200),cv2.FONT_HERSHEY_COMPLEX,1,(0,150,0),1)
    cv2.imshow("putText01 Image",img)
    cv2.putText(img,"I LOVE XD",(100,300),cv2.FONT_HERSHEY_COMPLEX,1,(0,150,0),1)
    cv2.imshow("putText02 Image",img)
    
    cv2.waitKey(0)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    在这里插入图片描述

    透视变换

    import cv2
    import numpy as np
    # warp perspective
    img = cv2.imread("Resources/cards.jpg")
    
    width,height = 250,350
    pts1 = np.float32([[111,219],[287,188],[154,482],[352,440]])
    pts2 = np.float32([[0,0],[width,0],[0,height],[width,height]])
    matrix = cv2.getPerspectiveTransform(pts1,pts2)
    imgOutput = cv2.warpPerspective(img,matrix,(width,height))
    
    cv2.imshow("Image",img)
    cv2.imshow("Output",imgOutput)
    
    cv2.waitKey(0)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    在这里插入图片描述

    图像拼接

    import cv2
    import numpy as np
    # join images
    def stackImages(scale,imgArray):
        rows = len(imgArray)
        cols = len(imgArray[0])
        rowsAvailable = isinstance(imgArray[0], list)
        width = imgArray[0][0].shape[1]
        height = imgArray[0][0].shape[0]
        if rowsAvailable:
            for x in range ( 0, rows):
                for y in range(0, cols):
                    if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:
                        imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
                    else:
                        imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
                    if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
            imageBlank = np.zeros((height, width, 3), np.uint8)
            hor = [imageBlank]*rows
            hor_con = [imageBlank]*rows
            for x in range(0, rows):
                hor[x] = np.hstack(imgArray[x])
            ver = np.vstack(hor)
        else:
            for x in range(0, rows):
                if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
                    imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
                else:
                    imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
                if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
            hor= np.hstack(imgArray)
            ver = hor
        return ver
    
    
    img = cv2.imread('Resources/dnn.jpg')
    imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    
    imgStack = stackImages(0.5,([img,imgGray,img],[img,img,img]))
    
    # imgHdr = np.hstack((img,img))
    # imgVer = np.vstack((img,img))
    # cv2.imshow("Horizontal",imgHdr)
    # cv2.imshow("Vertical",imgVer)
    
    cv2.imshow("ImageStack",imgStack)
    
    cv2.waitKey(0)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48

    在这里插入图片描述

    颜色检测

    import cv2
    import numpy as np
    # color dection
    
    def empty(a):
        pass
    '''连接图片'''
    def stackImages(scale,imgArray):
        rows = len(imgArray)
        cols = len(imgArray[0])
        rowsAvailable = isinstance(imgArray[0], list)
        width = imgArray[0][0].shape[1]
        height = imgArray[0][0].shape[0]
        if rowsAvailable:
            for x in range ( 0, rows):
                for y in range(0, cols):
                    if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:
                        imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
                    else:
                        imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
                    if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
            imageBlank = np.zeros((height, width, 3), np.uint8)
            hor = [imageBlank]*rows
            hor_con = [imageBlank]*rows
            for x in range(0, rows):
                hor[x] = np.hstack(imgArray[x])
            ver = np.vstack(hor)
        else:
            for x in range(0, rows):
                if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
                    imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
                else:
                    imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
                if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
            hor= np.hstack(imgArray)
            ver = hor
        return ver
    
    # 调整滑动条的位置来改变图像的颜色阈值,从而实现对图像的颜色分割或过滤
    path = 'Resources/lambo.PNG'
    framWidth = 640
    framHeight = 480
    
    cap = cv2.VideoCapture(path)
    cap.set(3,framWidth) #width
    cap.set(4,framHeight) #height
    cap.set(10,150)
    
    cv2.namedWindow("TrackBars")
    cv2.resizeWindow("TrackBars",640,240)
    cv2.createTrackbar("Hue Min","TrackBars",0,179,empty)  # hue
    cv2.createTrackbar("Hue Max","TrackBars",179,179,empty)
    cv2.createTrackbar("Sat Min","TrackBars",0,255,empty) # saturation
    cv2.createTrackbar("Sat Max","TrackBars",255,255,empty)
    cv2.createTrackbar("Val Min","TrackBars",0,255,empty)  # value
    cv2.createTrackbar("Val Max","TrackBars",255,255,empty)
    
    while True:
        img = cv2.imread(path)
        imgHSV = cv2.cvtColor(img,cv2.COLOR_BGR2HSV)
        h_min = cv2.getTrackbarPos("Hue Min","TrackBars")
        h_max = cv2.getTrackbarPos("Hue Max", "TrackBars")
        s_min = cv2.getTrackbarPos("Sat Min", "TrackBars")
        s_max = cv2.getTrackbarPos("Sat Max", "TrackBars")
        v_min = cv2.getTrackbarPos("Val Min", "TrackBars")
        v_max = cv2.getTrackbarPos("Val Max", "TrackBars")
        # print(h_min,h_max,s_min,s_max,v_min,v_max)
        lower = np.array([h_min,s_min,v_min])
        upper = np.array([h_max,s_max,v_max])
        #用掩码对原始图像进行位运算
        mask = cv2.inRange(imgHSV,lower,upper)
        imgResult = cv2.bitwise_and(img,img,mask=mask) #二值图像
    
        # cv2.imshow("Original",img)
        # cv2.imshow("HSV",imgHSV)
        # cv2.imshow("Mask", mask)
        # cv2.imshow("Result", imgResult)
    
        imgStack = stackImages(0.6, ([img, imgHSV], [mask, imgResult]))
        cv2.imshow("Stacked Images", imgStack)
    
        cv2.waitKey(1)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82

    在这里插入图片描述

    轮廓检测

    import cv2
    import numpy as np
    
    #contours / shape detection
    
    def stackImages(scale,imgArray):
        rows = len(imgArray)
        cols = len(imgArray[0])
        rowsAvailable = isinstance(imgArray[0], list)
        width = imgArray[0][0].shape[1]
        height = imgArray[0][0].shape[0]
        if rowsAvailable:
            for x in range ( 0, rows):
                for y in range(0, cols):
                    if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:
                        imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
                    else:
                        imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
                    if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
            imageBlank = np.zeros((height, width, 3), np.uint8)
            hor = [imageBlank]*rows
            hor_con = [imageBlank]*rows
            for x in range(0, rows):
                hor[x] = np.hstack(imgArray[x])
            ver = np.vstack(hor)
        else:
            for x in range(0, rows):
                if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
                    imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
                else:
                    imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
                if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
            hor= np.hstack(imgArray)
            ver = hor
        return ver
    
    def getContours(img):
        contours,hierarchy = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
        for cnt in contours:
            area = cv2.contourArea(cnt)
            print(area)
            if area>500:
                cv2.drawContours(imgContour,cnt,-1,(255,0,0),3)
                #计算轮廓曲线长度
                peri = cv2.arcLength(cnt,True)
                print(peri)
                
                approx = cv2.approxPolyDP(cnt,0.02*peri,True)
                print(len(approx))
                objCor = len(approx)
                x,y,w,h = cv2.boundingRect(approx)
                
    			# 图形分类
                if objCor == 3: objectType = "Tri"
                elif objCor == 4 :
                    aspRatio = w / float(h)
                    if aspRatio > 0.98 and aspRatio < 1.03: objectType = "Square"
                    else: objectType = "Rectangle"
                elif objCor > 4: objectType = "Circles"
                else: objectType = "None"
    
                cv2.rectangle(imgContour,(x,y),(x+w,y+h),(0,255,0),2)
                cv2.putText(imgContour,objectType,(x+(w//2)-10,y+(h//2)-10),cv2.FONT_HERSHEY_COMPLEX,0.7,(0,0,0),2)
    
    
    path = 'Resources/shapes.png'
    img = cv2.imread(path)
    imgContour = img.copy()
    
    imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    imgBlur = cv2.GaussianBlur(imgGray,(7,7),1)
    imgCanny = cv2.Canny(imgBlur,50,50)
    getContours(imgCanny)
    
    imgBlank = np.zeros_like(img)
    imgStack = stackImages(0.8,([img,imgGray],[imgCanny,imgContour]))
    
    cv2.imshow("Stack",imgStack)
    
    cv2.waitKey(0)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81

    在这里插入图片描述

    人脸检测

    9.1静态图片

    import cv2
    # face detection
    faceCascade = cv2.CascadeClassifier("Resources/haarcascade_frontalface_default.xml")
    img = cv2.imread("Resources/dnn.jpg")
    imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
    
    faces = faceCascade.detectMultiScale(imgGray,1.1,4)
    
    for(x,y,w,h) in faces:
        cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2)
    cv2.imshow("Result",img)
    
    cv2.waitKey(0)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    在这里插入图片描述

    9.2 摄像头

    import cv2
    
    faceCascade = cv2.CascadeClassifier("Resources/haarcascade_frontalface_default.xml")
    
    cap = cv2.VideoCapture(0)
    cap.set(3,640) #width
    cap.set(4,480) #height
    cap.set(10,100)
    
    while True:
       success,img = cap.read()
       cv2.imshow("Video",img)
       imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    
       faces = faceCascade.detectMultiScale(imgGray, 1.1, 4)
    
       for (x, y, w, h) in faces:
           cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
       cv2.imshow("Result", img)
       if cv2.waitKey(1) & 0xFF == ord('q'):
           break
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    在这里插入图片描述

    实战

    10.1虚拟绘画

    import cv2
    import numpy as np
    
    frameWidth = 640
    frameHeight = 480
    cap = cv2.VideoCapture(0)
    cap.set(3, frameWidth)
    cap.set(4, frameHeight)
    cap.set(10, 150)
    
    # 想要检测的颜色
    myColors = [[0,89,0,98,255,255], [0,47,0,97,255,255], [0,66,0,179,255,255], [0,54,0,98,255,255]]
    # 想要绘制的颜色  BGR
    myColorValues = [[51, 153, 255],[0, 255, 0],[255,0,0],[0,255,255]]
    # 绘制的点的列表
    myPoints = []  ## [x , y , colorId ]
    
    """获取想要绘制的,及对应的颜色"""
    def findColor(img, myColors, myColorValues):
        imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        count = 0
        newPoints = []
        for color in myColors:
            lower = np.array(color[0:3])
            upper = np.array(color[3:6])
            mask = cv2.inRange(imgHSV, lower, upper) 
    
            x, y = getContours(mask)  # 想要绘制的点
    
            cv2.circle(imgResult, (x, y), 20, myColorValues[count], cv2.FILLED)  # 将点绘制在图上
            if x != 0 and y != 0:
                newPoints.append([x, y, count])  # 将点添加到 newPoints列表中,count为想要绘制颜色的编号
            count += 1
        return newPoints  
    
    
    def getContours(img):
        contours, Heriachy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) 
        x, y, w, h = 0, 0, 0, 0
        for cnt in contours:
            area = cv2.contourArea(cnt)
            if area > 500:
                # cv2.drawContours(imgResult, cnt, -1, (255, 0, 0), 3)
                peri = cv2.arcLength(cnt, True)
                approx = cv2.approxPolyDP(cnt, 0.02 * peri, True)
                x, y, w, h = cv2.boundingRect(approx)  
        return x + w // 2, y  
    
    
    """把点绘制在画布上"""
    def drawOnCanvas(myPoints, myColorValues):
        for point in myPoints:
            cv2.circle(imgResult, (point[0], point[1]), 20, myColorValues[point[2]], cv2.FILLED)
    
    
    while True:
        success, img = cap.read()
        imgResult = img.copy()
        newPoints = findColor(img, myColors, myColorValues)  # 想要绘制的点
        if len(newPoints) != 0:
            for newP in newPoints:
                myPoints.append(newP)
        if len(myPoints) != 0:
            drawOnCanvas(myPoints, myColorValues)  # 将点绘制在画布上
    
        cv2.imshow("Result", imgResult)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
            
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70

    利用颜色检测滑杆来得出笔的颜色

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    在这里插入图片描述

    10.2纸张扫描

    import cv2
    import numpy as np
    
    widthImg=480
    heightImg =640
    
    img = cv2.imread("Resources/1.jpg")
    
    """图像预处理"""
    def preProcessing(img):
        imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        imgBlur = cv2.GaussianBlur(imgGray,(5,5),1)
        imgCanny = cv2.Canny(imgBlur,200,200)
        kernel = np.ones((5,5))
        imgDial = cv2.dilate(imgCanny,kernel,iterations=2)
        imgThres = cv2.erode(imgDial,kernel,iterations=1)
        return imgThres
    
    '''获取最大轮廓角点'''
    def getContours(img):
        biggest = np.array([])
        maxArea = 0
        contours,Heriachy= cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
        for cnt in contours:
            area = cv2.contourArea(cnt)
            if area>5000:
                peri = cv2.arcLength(cnt,True)
                approx = cv2.approxPolyDP(cnt,0.02*peri,True)
                if area >maxArea and len(approx) == 4:
                    biggest = approx
                    maxArea = area
    
        #绘制轮廓(biggest仅仅包含矩形的轮廓)
        cv2.drawContours(imgContour, biggest, -1, (255, 0, 0), 20)
        return biggest
    
    '''矩形角点的重新处理:按照一定的顺序排列(左上,右上,左下,右下)'''
    def reorder (myPoints):
        myPoints = myPoints.reshape((4,2))#四个角点
        myPointsNew = np.zeros((4,1,2),np.int32)
    
        #点按照一定的顺序重新排列
        add = myPoints.sum(1)#将点进行x+y计算,
        myPointsNew[0] = myPoints[np.argmin(add)] #和最小的点为左上角点
        myPointsNew[3] = myPoints[np.argmax(add)]#和最大的点为右下角点
    
        diff = np.diff(myPoints,axis=1)#将点进行x-y差异计算
        myPointsNew[1]= myPoints[np.argmin(diff)]#差异最小的点为右上
        myPointsNew[2] = myPoints[np.argmax(diff)]#差异最大的点为左下
    
        return myPointsNew
    
    '''鸟瞰转换'''
    def getWarp(img,biggest):
    
        #矩阵角点的处理,按照一个统一顺序排列
        biggest = reorder(biggest)
      
        pts1 = np.float32(biggest)
        pts2 = np.float32([[0, 0], [widthImg, 0], [0, heightImg], [widthImg, heightImg]])
    
        matrix = cv2.getPerspectiveTransform(pts1, pts2)
        #鸟瞰图
        imgOutput = cv2.warpPerspective(img, matrix, (widthImg, heightImg))
    
        #得到的鸟瞰图,边缘有其他背景,所以裁剪边缘,并将裁剪后的图像,重新调整为原来窗口大小。
        imgCropped = imgOutput[20:imgOutput.shape[0]-20,20:imgOutput.shape[1]-20]
        imgCropped = cv2.resize(imgCropped,(widthImg,heightImg))
    
        return imgCropped
    
    
    '''图像堆叠显示'''
    def stackImages(scale,imgArray):
        rows = len(imgArray)
        cols = len(imgArray[0])
        rowsAvailable = isinstance(imgArray[0], list)
        width = imgArray[0][0].shape[1]
        height = imgArray[0][0].shape[0]
        if rowsAvailable:
            for x in range ( 0, rows):
                for y in range(0, cols):
                    if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:
                        imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
                    else:
                        imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
                    if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
            imageBlank = np.zeros((height, width, 3), np.uint8)
            hor = [imageBlank]*rows
            hor_con = [imageBlank]*rows
            for x in range(0, rows):
                hor[x] = np.hstack(imgArray[x])
            ver = np.vstack(hor)
        else:
            for x in range(0, rows):
                if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
                    imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
                else:
                    imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
                if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
            hor= np.hstack(imgArray)
            ver = hor
        return ver
    
    
    while True:
        imgresize = cv2.resize(img,(widthImg,heightImg))
        imgContour = imgresize.copy()
        imgThres = preProcessing(imgresize)
        biggest = getContours(imgThres)
    
        if biggest.size != 0:
            # 鸟瞰转换
            imgWarped = getWarp(imgresize, biggest)
            imageArray = ([imgresize,imgThres],
                      [imgContour,imgWarped])
            cv2.imshow("ImageWarped", imgWarped)
        else:
            imageArray = ([imgContour, img])
    
            # 图像堆叠显示
        stackedImages = stackImages(0.5, imageArray)
        cv2.imshow("WorkFlow", stackedImages)
        cv2.waitKey(0)
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125

    在这里插入图片描述

    10.3 车牌检测器

    import cv2
    
    frameWidth = 640
    frameHeight = 480
    nPlateCascade = cv2.CascadeClassifier("Resources/haarcascade_russian_plate_number.xml")
    minArea = 200
    color = (255,0,255)
    
    cap = cv2.VideoCapture(0)
    cap.set(3, frameWidth)
    cap.set(4, frameHeight)
    cap.set(10,150)
    count = 0
    
    while True:
        success, img = cap.read() 
        imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
    
        #车牌检测
        numberPlates = nPlateCascade.detectMultiScale(imgGray, 1.1, 10)
        for (x, y, w, h) in numberPlates:
            area = w*h
            if area >minArea:
                #绘制矩形
                cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 255), 2)
                #绘制文字
                cv2.putText(img,"Number Plate",(x,y-5),cv2.FONT_HERSHEY_COMPLEX_SMALL,1,color,2)
                imgRoi = img[y:y+h,x:x+w]
                cv2.imshow("ROI", imgRoi)
    
        cv2.imshow("Result", img)
    
        if cv2.waitKey(1) & 0xFF == ord('s'):
            cv2.imwrite("Resources/Scanned/NoPlate_"+str(count)+".jpg",imgRoi)
            cv2.rectangle(img,(0,200),(640,300),(0,255,0),cv2.FILLED)
            cv2.putText(img,"Scan Saved",(150,265),cv2.FONT_HERSHEY_DUPLEX,2,(0,0,255),2)
            cv2.imshow("Result",img)
            cv2.waitKey(500)
            count +=1
            break
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    在这里插入图片描述

    按s键后可保存车牌

    在这里插入图片描述

    参考资料

    ChatGPT (openai.com)

    RGB Color Codes Chart 🎨 (rapidtables.com)

    图像基本操作 - 【布客】OpenCV 4.0.0 中文翻译 (apachecn.org)

  • 相关阅读:
    2023国赛数学建模B题思路代码 - 多波束测线问题
    edge扩展下载出现Download interrupted
    讨论面向对象及方法学的特点?为什么要用面向对象方法开发软件?
    Java异常、SpringBoot中全局捕获处理异常
    HTML+CSS个人静态网页设计
    Linux -- 使用多张gpu卡进行深度学习任务(以tensorflow为例)
    算法通关村第一关——链表经典问题之合并有序链表三种方法一层一层优化
    Mysql有多少种常见的日志,分别解释日志的作用
    k8s--基础--22.8--storageclass--类型--Ceph RBD
    实时分布式低延迟OLAP数据库Apache Pinot探索实操
  • 原文地址:https://blog.csdn.net/m0_56898461/article/details/132597929