Kaggle房价数据集,前四个为房价特征,最后一个为标签(房价)。

- import numpy as np
- import pandas as pd
- import torch
- from torch import nn
- from d2l import torch as d2l
- import hashlib
- import os
- import tarfile
- import zipfile
- import requests
-
- # 数据集下载
- DATA_HUB = dict()
- DATA_URL = 'http://d2l-data.s3-accelerate.amazonaws.com/'
-
-
- def download(name, cache_dir=os.path.join('.', 'data')): # @save
- """下载一个DATA_HUB中的文件,返回本地文件名"""
- assert name in DATA_HUB, f"{name} 不存在于 {DATA_HUB}"
- url, sha1_hash = DATA_HUB[name]
- os.makedirs(cache_dir, exist_ok=True)
- fname = os.path.join(cache_dir, url.split('/')[-1])
- if os.path.exists(fname):
- sha1 = hashlib.sha1()
- with open(fname, 'rb') as f:
- while True:
- data = f.read(1048576)
- if not data:
- break
- sha1.update(data)
- if sha1.hexdigest() == sha1_hash:
- return fname # 命中缓存
- print(f'正在从{url}下载{fname}...')
- r = requests.get(url, stream=True, verify=True)
- with open(fname, 'wb') as f:
- f.write(r.content)
- return fname
-
-
- def download_extract(name, folder=None): # @save
- """下载并解压zip/tar文件"""
- fname = download(name)
- base_dir = os.path.dirname(fname)
- data_dir, ext = os.path.splitext(fname)
- if ext == '.zip':
- fp = zipfile.ZipFile(fname, 'r')
- elif ext in ('.tar', '.gz'):
- fp = tarfile.open(fname, 'r')
- else:
- assert False, '只有zip/tar文件可以被解压缩'
- fp.extractall(base_dir)
- return os.path.join(base_dir, folder) if folder else data_dir
-
-
- def download_all(): # @save
- """下载DATA_HUB中的所有文件"""
- for name in DATA_HUB:
- download(name)
-
- DATA_HUB['kaggle_house_train'] = (
- DATA_URL + 'kaggle_house_pred_train.csv',
- '585e9cc93e70b39160e7921475f9bcd7d31219ce')
-
- DATA_HUB['kaggle_house_test'] = (
- DATA_URL + 'kaggle_house_pred_test.csv',
- 'fa19780a7b011d9b009e8bff8e99922a8ee2eb90')
-
- train_data = pd.read_csv(download('kaggle_house_train'))
- test_data = pd.read_csv(download('kaggle_house_test')) # 读表
查看数据集大小和部分样本:
- print(train_data.shape)
- print(test_data.shape)
-
- print(train_data.iloc[0:4, [0, 1, 2, 3, -3, -2, -1]])
(1460, 81)
(1459, 80)
Id MSSubClass MSZoning LotFrontage SaleType SaleCondition SalePrice
0 1 60 RL 65.0 WD Normal 208500
1 2 20 RL 80.0 WD Normal 181500
2 3 60 RL 68.0 WD Normal 223500
3 4 70 RL 60.0 WD Abnorml 140000
- """ 数据预处理 """
- all_features = pd.concat((train_data.iloc[:, 1:-1], test_data.iloc[:, 1:])) # 去掉id列
-
- # 将所有缺失的值替换为相应特征的平均值。通过将特征重新缩放到零均值和单位方差来标准化数据
- numeric_features = all_features.dtypes[all_features.dtypes != 'object'].index
-
- all_features[numeric_features] = all_features[numeric_features].apply(
- lambda x: (x - x.mean()) / (x.std())) # 标准化,将所有特征的均值变为0和方差变为1
-
- all_features[numeric_features] = all_features[numeric_features].fillna(0) # 将缺失项设置为0
-
- # “Dummy_na=True”将“na”(缺失值)视为有效的特征值,并为其创建指示符特征
- all_features = pd.get_dummies(all_features, dummy_na=True) # 为离散值生成独热编码,并增加一列表示空缺值
-
- # 从pandas格式中提取NumPy格式,并将其转换为张量表示
- n_train = train_data.shape[0]
- train_features = torch.tensor(all_features[:n_train].values, dtype=torch.float32)
- test_features = torch.tensor(all_features[n_train:].values, dtype=torch.float32)
- train_labels = torch.tensor(
- train_data.SalePrice.values.reshape(-1, 1), dtype=torch.float32)
查看特征总数大小:
print(all_features.shape)
(2919, 331)
可以看到经过数据预处理会将特征总数由79增加到331。
房价就像股票价格一样,我们关心的是相对误差,而不是绝对误差。比如说,农村的房价原本为12.5万,误差10万,和在市中心豪宅区的房价原本为420万,误差10万,显然使用绝对误差对结果评估的影响是不一样的,我们希望使用一种误差测量方法不受样本大小波动的影响,预测昂贵房屋和廉价房屋的误差能够同等影响预测结果,因此需要使用相对误差的测量方法,我们采用均方根损失来测量房价预测的相对误差。
- """ 训练 """
- loss = nn.MSELoss()
- in_features = train_features.shape[1] # 输入特征总数为331
-
-
- def get_net():
- net = nn.Sequential(nn.Linear(in_features, 1))
- return net
-
-
- def log_rmse(net, features, labels):
- # 为了在取对数时进一步稳定该值,将小于1的值设置为1
- clipped_preds = torch.clamp(net(features), 1, float('inf'))
- rmse = torch.sqrt(loss(torch.log(clipped_preds),
- torch.log(labels)))
- return rmse.item()
均方根损失函数:
- # 均方根损失
- def log_rmse(net, features, labels):
- # 为了在取对数时进一步稳定该值,将小于1的值设置为1
- clipped_preds = torch.clamp(net(features), 1, float('inf'))
- rmse = torch.sqrt(loss(torch.log(clipped_preds),
- torch.log(labels)))
- return rmse.item()
训练函数:
训练函数使用Adam优化器。
- # 训练函数
- def train(net, train_features, train_labels, test_features, test_labels,
- num_epochs, learning_rate, weight_decay, batch_size):
- train_ls, test_ls = [], []
- train_iter = d2l.load_array((train_features, train_labels), batch_size) # 加载训练数据
- # 这里使用的是Adam优化算法
- optimizer = torch.optim.Adam(net.parameters(),
- lr = learning_rate,
- weight_decay = weight_decay)
- for epoch in range(num_epochs):
- for X, y in train_iter:
- optimizer.zero_grad()
- l = loss(net(X), y)
- l.backward()
- optimizer.step()
- train_ls.append(log_rmse(net, train_features, train_labels))
- if test_labels is not None:
- test_ls.append(log_rmse(net, test_features, test_labels))
- return train_ls, test_ls
- def get_k_fold_data(k, i, X, y):
- assert k > 1
- fold_size = X.shape[0] // k
- X_train, y_train = None, None
- for j in range(k):
- idx = slice(j * fold_size, (j + 1) * fold_size)
- X_part, y_part = X[idx, :], y[idx]
- if j == i:
- X_valid, y_valid = X_part, y_part
- elif X_train is None:
- X_train, y_train = X_part, y_part
- else:
- X_train = torch.cat([X_train, X_part], 0)
- y_train = torch.cat([y_train, y_part], 0)
- return X_train, y_train, X_valid, y_valid
当我们在K折交叉验证中训练K次后,返回训练和验证误差的平均值。
- def k_fold(k, X_train, y_train, num_epochs, learning_rate, weight_decay,
- batch_size):
- train_l_sum, valid_l_sum = 0, 0 # 用于存储训练误差和验证误差的总和
- for i in range(k):
- data = get_k_fold_data(k, i, X_train, y_train)
- net = get_net() #选择模型
- train_ls, valid_ls = train(net, *data, num_epochs, learning_rate,
- weight_decay, batch_size) # 训练模型
- train_l_sum += train_ls[-1] # 将当前训练误差的最后一个值累加到train_l_sum变量中
- valid_l_sum += valid_ls[-1]
- if i == 0: # 第一次循环
- d2l.plot(list(range(1, num_epochs + 1)), [train_ls, valid_ls],
- xlabel='epoch', ylabel='rmse', xlim=[1, num_epochs],
- legend=['train', 'valid'], yscale='log')
- print(f'折{i + 1},训练log rmse{float(train_ls[-1]):f}, '
- f'验证log rmse{float(valid_ls[-1]):f}')
- return train_l_sum / k, valid_l_sum / k
不断的更换超参数,保留最优的超参数。
- k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
- train_l, valid_l = k_fold(k, train_features, train_labels, num_epochs, lr,
- weight_decay, batch_size)
- print(f'{k}-折验证: 平均训练log rmse: {float(train_l):f}, '
- f'平均验证log rmse: {float(valid_l):f}')
- """ 训练与预测 """
- def train_and_pred(train_features, test_features, train_labels, test_data,
- num_epochs, lr, weight_decay, batch_size):
- net = get_net()
- train_ls, _ = train(net, train_features, train_labels, None, None,
- num_epochs, lr, weight_decay, batch_size)
- d2l.plot(np.arange(1, num_epochs + 1), [train_ls], xlabel='epoch',
- ylabel='log rmse', xlim=[1, num_epochs], yscale='log')
- print(f'训练log rmse:{float(train_ls[-1]):f}')
- # 将网络应用于测试集。
- preds = net(test_features).detach().numpy()
- # 将其重新格式化以导出到Kaggle
- test_data['SalePrice'] = pd.Series(preds.reshape(1, -1)[0])
- submission = pd.concat([test_data['Id'], test_data['SalePrice']], axis=1)
- submission.to_csv('submission.csv', index=False)
-
-
- k, num_epochs, lr, weight_decay, batch_size = 5, 100, 5, 0, 64
- train_and_pred(train_features, test_features, train_labels, test_data,
- num_epochs, lr, weight_decay, batch_size)