L2 范数 = 欧几里得范数(Euclidean norm) = 欧式长度(欧氏距离) = L2距离,对应 ||x||2

L2范数损失 = L2-norm损失 = 最小平方误差(least squares error, LSE) = 最小二乘误差 。它是把目标值y与估计值f(x)的差值的平方和最小化。一般回归问题会用此损失,离群点对次损失影响较大。

L2损失(L2 Loss) = 均方误差(Mean Square Error,MSE)。是模型预测值f(x)与真实样本值y之间差值平方的均值,其公式如下

参考:区分混淆概念之L2范数,L2范数损失,L2损失,均方误差
像下式也是均方误差(摘自我的毕设答辩PPT,含义是感知损失perceptual reconstruction loss)

L1损失 = 平均绝对误差(Mean Absolute Error,MAE)

参考:深度学习中常见的损失函数(L1Loss、L2loss)
在回归里面,有人把有它的回归叫“岭回归”(Ridge Regression),有人也叫它“权值衰减weight decay”。L2范数强大功效是改善机器学习里面一个非常重要的问题:过拟合。
范数是指向量各元素的平方和然后求平方根。我们让L2范数的规则项||W||2最小,可以使得W的每个元素都很小,都接近于0,但与L1范数不同,它不会让它等于0,而是接近于0,这里是有很大的区别的哦。而越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象。为什么越小的参数说明模型越简单?一种理解是:“限制了参数很小,实际上就限制了多项式某些分量大小,使分量的影响很小,这样就相当于减少参数个数”。
原文链接:欧氏距离,l2范数,l2-loss,l2正则化