目录
1.正确版本组合:Win7+Matlab R2015b+CUDA7.5+vs2013
CUDA7.5下载地址为:
http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/cuda_7.5.18_windows.exe
vs2013要专业版。
如下所示:

全部安装好之后,做如下操作:
2.CPU配置,运行CNN工具箱中的
,然后再运行
可以完成CPP文件的编译。
3.编译成功后,会产生

这些必须在电脑上编译,否则别人的复制给你,如果配置不一样,可能会报错。
4.GPU配置:
安装cudnn:https://developer.nvidia.com/rdp/cudnn-archive,放到CNN工具箱中的新建local文件夹中,
然后mex -setup下,操作和CPU一样。
然后执行matlab程序:
vl_setupnn;
vl_compilenn('enableGpu', true,'cudaRoot', 'C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5','cudaMethod', 'nvcc', 'enableCudnn', 'true','cudnnRoot', 'E:\A_2016_FPGA_Test\FC_tracking\A_FC\matconvnet-1.0-beta20\local\cudnn');
红色部分为你的路径,不要有中文。
5.然后运行我给的程序
,就可以自动运行了,原来程序的运行非常麻烦,我定义了这个程序,可以一步运行处结果。
Win7+Matlab R2015b+CUDA7.5+vs2013
运行后,如果可以出现如下结果:

- % -------------------------------------------------------------------------------------------------
- function bboxes = tracker(varargin)
- %TRACKER
- % is the main function that performs the tracking loop
- % Default parameters are overwritten by VARARGIN
- %
- % Luca Bertinetto, Jack Valmadre, Joao F. Henriques, 2016
- % -------------------------------------------------------------------------------------------------
- % These are the default hyper-params for SiamFC-3S
- % The ones for SiamFC (5 scales) are in params-5s.txt
- p.numScale = 3;
- p.scaleStep = 1.0375;
- p.scalePenalty = 0.9745;
- p.scaleLR = 0.59; % damping factor for scale update
- p.responseUp = 16; % upsampling the small 17x17 response helps with the accuracy
- p.windowing = 'cosine'; % to penalize large displacements
- p.wInfluence = 0.176; % windowing influence (in convex sum)
- p.net = '2016-08-17.net.mat';
- %% execution, visualization, benchmark
- p.video = 'vot15_bag';
- p.visualization = false;
- p.gpus = 1;
- p.bbox_output = false;
- p.fout = -1;
- %% Params from the network architecture, have to be consistent with the training
- p.exemplarSize = 127; % input z size
- p.instanceSize = 255; % input x size (search region)
- p.scoreSize = 17;
- p.totalStride = 8;
- p.contextAmount = 0.5; % context amount for the exemplar
- p.subMean = false;
- %% SiamFC prefix and ids
- p.prefix_z = 'a_'; % used to identify the layers of the exemplar
- p.prefix_x = 'b_'; % used to identify the layers of the instance
- p.prefix_join = 'xcorr';
- p.prefix_adj = 'adjust';
- p.id_feat_z = 'a_feat';
- p.id_score = 'score';
- % Overwrite default parameters with varargin
- p = vl_argparse(p, varargin);
- % -------------------------------------------------------------------------------------------------
-
- % Get environment-specific default paths.
- p = env_paths_tracking(p);
- 1
- % Load ImageNet Video statistics
- if exist(p.stats_path,'file')
- stats = load(p.stats_path);
- else
- warning('No stats found at %s', p.stats_path);
- stats = [];
- end
-
- 2
- % Load two copies of the pre-trained network
- net_z = load_pretrained([p.net_base_path p.net], p.gpus);
- 3
- net_x = load_pretrained([p.net_base_path p.net], []);
- 4
- p.seq_base_path
- p.video
- [imgFiles, targetPosition, targetSize] = load_video_info(p.seq_base_path, p.video);
- nImgs = numel(imgFiles);
- startFrame = 1;
- 5
- % Divide the net in 2
- % exemplar branch (used only once per video) computes features for the target
- remove_layers_from_prefix(net_z, p.prefix_x);
- remove_layers_from_prefix(net_z, p.prefix_join);
- remove_layers_from_prefix(net_z, p.prefix_adj);
- % instance branch computes features for search region x and cross-correlates with z features
- 6
- remove_layers_from_prefix(net_x, p.prefix_z);
- zFeatId = net_z.getVarIndex(p.id_feat_z);
- scoreId = net_x.getVarIndex(p.id_score);
- % get the first frame of the video
- im = gpuArray(single(imgFiles{startFrame}));
- % if grayscale repeat one channel to match filters size
- if(size(im, 3)==1)
- im = repmat(im, [1 1 3]);
- end
- % Init visualization
- videoPlayer = [];
- if p.visualization && isToolboxAvailable('Computer Vision System Toolbox')
- videoPlayer = vision.VideoPlayer('Position', [100 100 [size(im,2), size(im,1)]+30]);
- end
- 7
- % get avg for padding
- avgChans = gather([mean(mean(im(:,:,1))) mean(mean(im(:,:,2))) mean(mean(im(:,:,3)))]);
-
- wc_z = targetSize(2) + p.contextAmount*sum(targetSize);
- hc_z = targetSize(1) + p.contextAmount*sum(targetSize);
- s_z = sqrt(wc_z*hc_z);
- scale_z = p.exemplarSize / s_z;
- % initialize the exemplar
- [z_crop, ~] = get_subwindow_tracking(im, targetPosition, [p.exemplarSize p.exemplarSize], [round(s_z) round(s_z)], avgChans);
- if p.subMean
- z_crop = bsxfun(@minus, z_crop, reshape(stats.z.rgbMean, [1 1 3]));
- end
- d_search = (p.instanceSize - p.exemplarSize)/2;
- pad = d_search/scale_z;
- s_x = s_z + 2*pad;
- % arbitrary scale saturation
- min_s_x = 0.2*s_x;
- max_s_x = 5*s_x;
-
- switch p.windowing
- case 'cosine'
- window = single(hann(p.scoreSize*p.responseUp) * hann(p.scoreSize*p.responseUp)');
- case 'uniform'
- window = single(ones(p.scoreSize*p.responseUp, p.scoreSize*p.responseUp));
- end
- % make the window sum 1
- window = window / sum(window(:));
- scales = (p.scaleStep .^ ((ceil(p.numScale/2)-p.numScale) : floor(p.numScale/2)));
- % evaluate the offline-trained network for exemplar z features
- net_z.eval({'exemplar', z_crop});
- z_features = net_z.vars(zFeatId).value;
- z_features = repmat(z_features, [1 1 1 p.numScale]);
- bboxes = zeros(nImgs, 4);
- % start tracking
- tic;
- for i = startFrame:nImgs
- i
- if i>startFrame
- % load new frame on GPU
- im = gpuArray(single(imgFiles{i}));
- % if grayscale repeat one channel to match filters size
- if(size(im, 3)==1)
- im = repmat(im, [1 1 3]);
- end
- scaledInstance = s_x .* scales;
- scaledTarget = [targetSize(1) .* scales; targetSize(2) .* scales];
- % extract scaled crops for search region x at previous target position
- x_crops = make_scale_pyramid(im, targetPosition, scaledInstance, p.instanceSize, avgChans, stats, p);
- % evaluate the offline-trained network for exemplar x features
- [newTargetPosition, newScale] = tracker_eval(net_x, round(s_x), scoreId, z_features, x_crops, targetPosition, window, p);
- targetPosition = gather(newTargetPosition);
- % scale damping and saturation
- s_x = max(min_s_x, min(max_s_x, (1-p.scaleLR)*s_x + p.scaleLR*scaledInstance(newScale)));
- targetSize = (1-p.scaleLR)*targetSize + p.scaleLR*[scaledTarget(1,newScale) scaledTarget(2,newScale)];
- else
- % at the first frame output position and size passed as input (ground truth)
- end
- rectPosition = [targetPosition([2,1]) - targetSize([2,1])/2, targetSize([2,1])];
- % output bbox in the original frame coordinates
- oTargetPosition = targetPosition; % .* frameSize ./ newFrameSize;
- oTargetSize = targetSize; % .* frameSize ./ newFrameSize;
- bboxes(i, :) = [oTargetPosition([2,1]) - oTargetSize([2,1])/2, oTargetSize([2,1])];
- % if p.visualization
- if isempty(videoPlayer)
- figure(1), imshow(im/255);
- figure(1), rectangle('Position', rectPosition, 'LineWidth', 4, 'EdgeColor', 'y');
- drawnow
- fprintf('Frame %d\n', startFrame+i);
- else
- im = gather(im)/255;
- im = insertShape(im, 'Rectangle', rectPosition, 'LineWidth', 4, 'Color', 'yellow');
- % Display the annotated video frame using the video player object.
- step(videoPlayer, im);
- end
- % end
- if p.bbox_output
- fprintf(p.fout,'%.2f,%.2f,%.2f,%.2f\n', bboxes(i, :));
- end
- end
- bboxes = bboxes(startFrame : i, :);
- end
- A000
V