• SpringCloud Alibaba(二) - Sentinel,整合OpenFeign,GateWay服务网关


    1、环境准备

    1.1Nacos

    单机启动:startup.cmd -m standalone

    1.2 Sentinel

    启动命令:java -Dserver.port=8858 -Dcsp.sentinel.dashboard.server=localhost:8858 -Dproject.name=sentinel-dashboard -jar sentinel-dashboard-1.8.0.jar

    1.3 JMeter

    2、流控规则限流

    2.0 环境搭建

    2.0.1 依赖

    
    <dependency>
        <groupId>com.alibaba.cloudgroupId>
        <artifactId>spring-cloud-starter-alibaba-nacos-discoveryartifactId>
    dependency>
    
    
    <dependency>
        <groupId>com.alibaba.cloudgroupId>
        <artifactId>spring-cloud-starter-alibaba-sentinelartifactId>
    dependency>
    
    
    <dependency>
        <groupId>org.springframework.bootgroupId>
        <artifactId>spring-boot-starter-actuatorartifactId>
    dependency>
    

    2.0.2 application.yml

    # 端口
    server:
      port: 9604
    
    # 服务名
    spring:
      application:
        name: kgcmall-sentinel
    
      # 数据源配置
      datasource:
        driver-class-name: com.mysql.cj.jdbc.Driver
        url: jdbc:mysql://localhost:3306/kh96_alibaba_kgcmalldb?useUnicode=true&characterEncoding=utf-8&useSSL=false&serverTimezone=GMT
        username: root
        password: 17585273765
    
      # jpa配置
      jpa:
        hibernate:
          ddl-auto: update
        show-sql: true
    
      cloud:
        #nacos 配置
        nacos:
          discovery:
            server-addr: 127.0.0.1:8848
    
        #sentinel 配置
        sentinel:
          transport:
            dashboard: 127.0.0.1:8858 # sentinel 控制台地址
            port: 9605 # 客户端(核心应用)和控制台的通信端口,默认8719,子当以一个为被使用的唯一端口即可
          web-context-unify: false #关闭收敛 
    
    # 暴露/actuator/sentinel端点 单独配置,management 开顶格写
    management:
      endpoints:
        web:
          exposure:
            include: '*'
    

    2.0.3 测试

    http://localhost:9604/actuator/sentinel

    2.1 流控模式

    2.1.1 直接模式

    2.1.1.1 测试请求
    /**
    * @param : [sentinelDesc]
    * @return : java.lang.String
    * @author : huayu
    * @date : 26/11/2022
    * @description : 测试 Sentinel 流控 - 直接失败
    */
    @GetMapping("testSentinelFlowFail")
    public String testSentinelFlowFail(@RequestParam String sentinelDesc) {
        log.info("------ testSentinelFlowFail 接口调用 ------ ");
        return sentinelDesc;
    }
    
    2.1.1.2 添加直接流控规则
    2.1.1.2.1 需要先发起异常请求

    2.1.1.2.2 簇点链路 添加流控规则

    2.1.1.2.3 设置流控规则

    2.1.1.3查看流控规则

    2.1.1.4 测试

    2.1.1.5 自定义sentinel统一已成返回处理
    /**
     * Created On : 26/11/2022.
     * 

    * Author : huayu *

    * Description: 自定义sentinel统一已成返回处理 */ @Slf4j @Component public class MySentinelBlockExceptionHandler implements BlockExceptionHandler { @Override public void handle(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse, BlockException e) throws Exception { // 记录异常日志 log.warn("------ MySentinelBlockExceptionHandler 规则Rule:{} ------", e.getRule()); // 增加自定义统一异常返回对象 RequestResult requestResult = null; // 针对不同的流控异常,统一返回 if (e instanceof FlowException) { requestResult = ResultBuildUtil.fail("9621", "接口流量限流"); } else if (e instanceof DegradeException) { requestResult = ResultBuildUtil.fail("9622", "接口服务降级"); } else if (e instanceof ParamFlowException) { requestResult = ResultBuildUtil.fail("9623", "热点参数限流"); } else if (e instanceof SystemBlockException) { requestResult = ResultBuildUtil.fail("9624", "触发系统保护"); } else if (e instanceof AuthorityException) { requestResult = ResultBuildUtil.fail("9625", "授权规则限制"); } // 统一返回json结果 httpServletResponse.setStatus(HttpStatus.FORBIDDEN.value()); httpServletResponse.setCharacterEncoding("utf-8"); httpServletResponse.setContentType(MediaType.APPLICATION_JSON_VALUE); // 借助SpringMVC自带的Jackson工具,返回结果 new ObjectMapper().writeValue(httpServletResponse.getWriter(), requestResult); } }

    2.1.1.6 再次测试

    2.1.2 关联模式

    2.1.2.1 测试请求
    /**
    * @param : [sentinelDesc]
    * @return : java.lang.String
    * @author : huayu
    * @date : 26/11/2022
    * @description : 测试 Sentinel 流控 - 关联
    */
    @GetMapping("testSentinelFlowLink")
    public String testSentinelFlowLink(@RequestParam String sentinelDesc) {
        log.info("------ testSentinelFlowLink 接口调用 ------ ");
        return sentinelDesc;
    }
    
    2.1.1.2 添加关联流控规则

    2.1.1.3 JMeter压测配置
    2.1.1.3.1 线程组

    2.1.1.3.2 Http请求

    2.1.3 链路模式

    链路流控模式指的是,当从某个接口过来的资源达到限流条件时,开启限流。它的功能有点类似于针对来源配置项,区别在于:针对来源是针对上级微服务,而链路流控是针对上级接口,也就是说它的粒度更细。

    2.1.3.1 添加调用方法
    2.1.3.1.1 接口
    /**
     * Created On : 26/11/2022.
     * 

    * Author : huayu *

    * Description: 测试链路 模式 */ public interface SentinelService { void message(); }

    2.1.3.1.2 实现类
    /**
     * Created On : 26/11/2022.
     * 

    * Author : huayu *

    * Description: 测试链路 模式 实现类 */ @Service public class SentinelServiceImpl implements SentinelService { @Override @SentinelResource("message") // 在@SentinelResource中指定资源名 public void message() { System.out.println("message"); } }

    2.1.3.2 两个接口,调用相同的资源
    @Slf4j
    @RestController
    public class KgcMallSentinelController {
    
    
        @Autowired
        private SentinelService sentinelService;
    
      //测试 Sentinel 流控 - 直接失败
        @GetMapping("testSentinelFlowFail")
        public String testSentinelFlowFail(@RequestParam String sentinelDesc) {
    
            log.info("------ testSentinelFlowFail 接口调用 ------ ");
    
            //测试 链路模式调用相同的资源
            sentinelService.message();
    
            return sentinelDesc;
        }
    
    
        //测试 Sentinel 流控 - 关联
        @GetMapping("testSentinelFlowLink")
        public String testSentinelFlowLink(@RequestParam String sentinelDesc) {
    
            log.info("------ testSentinelFlowLink 接口调用 ------ ");
    
            //测试 链路模式调用相同的资源
            sentinelService.message();
            return sentinelDesc;
        }
    
    }
    
    2.1.3.3 添加链路流控规则

    2.1.3.4 测试

    如果message触发流控,指定的入口就会被限流;

    2.1.3.4.0 高版本此功能直接使用不生效:

    1.7.0 版本开始(对应SCA的2.1.1.RELEASE),官方在CommonFilter 引入了WEB_CONTEXT_UNIFY 参数,用于控制是否收敛context。将其配置为 false 即可根据不同的URL 进行链路限流。

    spring:
      cloud:
        #sentinel 配置
        sentinel:
          web-context-unify: false #关闭收敛 
    
    2.1.3.4.1 testSentinelFlowFail 请求

    2.1.3.4.2 testSentinelFlowLink请求 (message 资源对此入口进行了限流)

    使用链路规则,会导致统一返回处理,无法生效;

    2.2 流控规则

    2.2.1 快速失败

    快速失败:直接抛出异常,默认的流量控制方式

    当QPS超过任意规则的阈值后,新的请求就会被立即拒绝。这种方式适用于对系统处理能力确切已知的情况下;

    2.2.2 Warm Up(激增模式)

    Warm Up(激增流量)即预热/冷启动方式;

    冷加载因子: codeFactor 默认是3,即请求 QPS 从 1 / 3 开始,经预热时长逐渐升至设定的 QPS 阈值。

    当系统长期处于低水位的情况下,当流量突然增加时,直接把系统拉升到高水位可能瞬间把系统压垮。通过"冷启动",让通过的流量缓慢增加,在一定时间内逐渐增加到阈值上限,给冷系统一个预热的时间,避免冷系统被压垮。

    2.2.2.1 使用 testSentinelFlowFail 请求测试

    请求方法省略;

    2.2.2.2 流控配置

    2.2.2.3 压测配置

    2.2.3.4 实时监控

    2.2.3 匀速模式

    会严格控制请求通过的间隔时间,也即是让请求以均匀的速度通过,其余的排队等待,对应的是漏桶算法。

    用于处理间隔性突发的流量,例如消息队列,在某一秒有大量的请求到来,而接下来的几秒则处于空闲状态,这个时候我们不希望一下子把所有的请求都通过,这样可能会把系统压垮;同时我们也期待系统以稳定的速度,逐步处理这些请求,以起到“削峰填谷”的效果,而不是第一秒拒绝所有请求。

    选择排队等待的阈值类型必须是QPS,且暂不支持>1000的模式

    2.2.3.1 使用 testSentinelFlowFail 请求测试

    请求方法省略;

    单机阈值:每秒通过的请求个数是5,则每隔200ms通过一次请求;每次请求的最大等待时间为500ms=0.5s,超过0.5S就丢弃请求。

    2.2.3.2 流控配置

    2.2.3.3 压测配置

    2.2.3.4 实时监控

    3、降级规则限流

    3.1慢调用比例-SLOW_REQUEST_RATIO

    选择以慢调用比例作为阈值,需要设置允许的慢调用 RT(即最大的响应时间),请求的响应时间大于该值则统计为慢调用。当单位统计时长(statIntervalMs)内请求数目大于设置的最小请求数目,并且慢调用的比例大于阈值,则接下来的熔断时长内请求会自动被熔断。经过熔断时长后熔断器会进入探测恢复状态(HALF­OPEN 状态),若接下来的一个请求响应时间小于设置的慢调用 RT 则结束熔断,若大于设置的慢调用 RT 则会再次被熔断。

    3.1.1 模拟慢调用请求

    /**
    * @param : [sentinelDesc]
    * @return : java.lang.String
     * @author : huayu
    * @date : 26/11/2022
     * @description : 测试 Sentinel-降级-慢调用
    */
    @GetMapping("testSentinelDown")
    public String testSentinelDown(@RequestParam String sentinelDesc) throws InterruptedException {
    
        log.info("------ testSentinelDown 接口调用 ------ ");
    
        //模拟慢调用
        TimeUnit.MILLISECONDS.sleep(100);
    
        return sentinelDesc;
    }
    

    3.1.2 降级策略

    3.1.3 压测配置

    3.1.4 实时监控

    3.1.5 从浏览器请求测试

    3.2 异常比例-ERROR_RATIO

    当单位统计时长(statIntervalMs)内请求数目大于设置的最小请求数目,并且异常的比例大于阈值,则接下来的熔断时长内请求会自动被熔断。

    经过熔断时长后熔断器会进入探测恢复状态(HALF­OPEN 状态),若接下来的一个请求成功完成(没有错误)则结束熔断,否则会再次被熔断。异常比率的阈值范围是 [0.0, 1.0],代表 0% ­ 100%。

    3.2.1 模拟异常比例请求

    /**
    * @param : [sentinelDesc]
    * @return : java.lang.String
    * @author : huayu
    * @date : 26/11/2022
    * @description : 测试 Sentinel-降级-异常比例    异常数
    */
    @GetMapping("testSentinelDownExpScale")
    public String testSentinelDownExpScale(@RequestParam String sentinelDesc) throws InterruptedException {
    
        log.info("------ testSentinelDownExpScale 接口调用 ------ ");
    
        //模拟异常
        int num = new Random().nextInt(10);
        if (num % 2 == 1) {
            num = 10 / 0;
        }
        return sentinelDesc;
    }
    

    3.2.2 降级策略

    3.2.3 压测配置

    3.2.4 实时监控

    3.2.5 从浏览器请求测试

    3.3 异常数-ERROR_COUNT

    当单位统计时长内的异常数目超过阈值之后会自动进行熔断。经过熔断时长后熔断器会进入探测恢复状态(HALF­OPEN 状态),若接下来的一个请求成功完成(没有错误)则结束熔断,否则会再次被熔断。

    注意:异常降级仅针对业务异常,对 Sentinel 限流降级本身的异常(BlockException)不生效。

    3.3.1 模拟异常参数请求

    /**
    * @param : [sentinelDesc]
    * @return : java.lang.String
    * @author : huayu
    * @date : 26/11/2022
    * @description : 测试 Sentinel-降级-异常比例    异常数
    */
    @GetMapping("testSentinelDownExpScale")
    public String testSentinelDownExpScale(@RequestParam String sentinelDesc) throws InterruptedException {
    
        log.info("------ testSentinelDownExpScale 接口调用 ------ ");
    
        //模拟异常
        int num = new Random().nextInt(10);
        if (num % 2 == 1) {
            num = 10 / 0;
        }
        return sentinelDesc;
    }
    

    3.3.2 降级策略

    3.3.3 压测配置

    3.3.4 实时监控

    3.3.5 从浏览器请求测试

    4、热点规则限流

    何为热点?热点即经常访问的数据。很多时候我们希望统计某个热点数据中访问频次最高的数据,并对其访问进行限制。

    热点参数限流会统计传入参数中的热点参数,并根据配置的限流阈值与模式,对包含热点参数的资源调用进行限流。热点参数限流可以看做是一种特殊的流量控制,仅对包含热点参数的资源调用生效

    4.1 单机阈值

    单机阈值: 针对所有参数的值进行设置的一个公共的阈值

    1. 假设当前 参数 大部分的值都是热点流量, 单机阈值就是针对热点流量进行设置, 额外针对普通流量进行参数值流控;
    2. 假设当前 参数 大部分的值都是普通流量, 单机阈值就是针对普通流量进行设置, 额外针对热点流量进行参数值流控

    配置热点参数规则:

    资源名必须是@SentinelResource(value="资源名")中 配置的资源名,热点规则依赖于注解;

    单独指定参数例外的参数具体值,必须是指定的7种数据类型才会生效;

    4.1.1 模拟 单机阈值请求

    /**
    * @param : [sentinelDesc]
    * @return : java.lang.String
    * @author : huayu
    * @date : 26/11/2022
    * @description : 测试 Sentinel-热点
    */
    @GetMapping("testSentinelHotParam")
    @SentinelResource(value = "sentinelHotParam", blockHandlerClass = MySentinelHotBlockExceptionHandler.class, blockHandler = "hotBlockExceptionHandle")
    //热点参数,必须使用此注解,指定资源名
    //注意使用此注解无法处理BlockExecption,会导致统一异常处理失效
    public String testSentinelHotParam(@RequestParam String sentinelDesc) {
    
        log.info("------ testSentinelHotParam 接口调用 ------ ");
    
        return sentinelDesc;
    }
    

    4.1.2注意使用此注解无法处理BlockExecption,会导致统一异常处理失效

    4.1.2.1 方法一:类内处理方法
    @GetMapping("testSentinelHotParam")
    @SentinelResource(value = "sentinelHotParam",blockHandler = "hotBlockExceptionHandle")
    //热点参数,必须使用此注解,指定资源名
    //注意使用此注解无法处理BlockExecption,会导致统一异常处理失效
    public String testSentinelHotParam(@RequestParam String sentinelDesc) {
        log.info("------ testSentinelHotParam 接口调用 ------ ");
        return sentinelDesc;
    }
    
    
    
    /**
    * @author : huayu
    * @date   : 26/11/2022
    * @param  : [sentinelDesc, e]
    * @return : java.lang.String
    * @description : 类内处理方法  增加一个自定义处理方法,参数必须跟入口一致
    */
    public String hotBlockExceptionHandle(@RequestParam String sentinelDesc, BlockException e){
        //记录异常日志
        log.warn("------ hotBlockExceptionHandle 规则Rule:{} ------", e.getRule());
        return JSON.toJSONString(ResultBuildUtil.fail("9623", "热点参数限流")) ;
    
    }
    
    4.1.2.2 方法二:单独处理类
    @GetMapping("testSentinelHotParam")
    @SentinelResource(value = "sentinelHotParam", blockHandlerClass = MySentinelHotBlockExceptionHandler.class, blockHandler = "hotBlockExceptionHandle")
    //热点参数,必须使用此注解,指定资源名
    //注意使用此注解无法处理BlockExecption,会导致统一异常处理失效
    public String testSentinelHotParam(@RequestParam String sentinelDesc) {
    
        log.info("------ testSentinelHotParam 接口调用 ------ ");
    
        return sentinelDesc;
    }
    
    
    //==========处理类
    /**
     * Created On : 26/11/2022.
     * 

    * Author : huayu *

    * Description: 方式2 自定义热点参数限流处理异常并指定治理方法 */ @Slf4j public class MySentinelHotBlockExceptionHandler { /** * @param : [sentinelDesc, e] * @return : java.lang.String * @author : huayu * @date : 26/11/2022 * @description : hotBlockExceptionHandle 方法 必须是 静态的 增加一个自定义处理方法,参数必须跟入口一致 */ public static String hotBlockExceptionHandle(@RequestParam String sentinelDesc, BlockException e) { //记录异常日志 log.warn("------ hotBlockExceptionHandle 规则Rule:{} ------", e.getRule()); return JSON.toJSONString(ResultBuildUtil.fail("9623", "热点参数限流")); } }

    4.1.3 热点参数策略和规则(sentinelHotParam)

    4.1.4 浏览器快速请求测试

    5、授权规则限流

    根据调用来源来判断该次请求是否允许放行,这时候可以使用 Sentinel 的来源访问控制的功能。

    来源访问控制根据资源的请求来源(origin)限制资源是否通过:

    • 若配置白名单,则只有请求来源位于白名单内时才可通过;
    • 若配置黑名单,则请求来源位于黑名单时不通过,其余的请求通过。

    配置项:

    • 资源名resource,即限流规则的作用对象
    • 流控应用limitApp,对应的黑名单/白名单,不同 origin 用 , 分隔,如 appA,appB
      • Sentinel提供了 RequestOriginParser 接口来处理来源
      • 只要Sentinel保护的接口资源被访问,Sentinel就会调用 RequestOriginParser 的实现类去解析访问来源。
    • 限制模式strategy,AUTHORITY_WHITE 为白名单模式,AUTHORITY_BLACK 为黑名单模式,默认为白名单模式

    5.1 自定义来源处理规则

    /**
     * Created On : 26/11/2022.
     * 

    * Author : huayu *

    * Description: 自定义授权规则解析 来源 处理类 */ @Component public class MySentinelAuthRequestOriginParser implements RequestOriginParser { @Override public String parseOrigin(HttpServletRequest httpServletRequest) { // TODO 实际应用场景中,可以根据请求来源ip,进行ip限制 //模拟,通过请求参数中,是否携带了自定义的来源参数OriginAuth //根据授权规则中的流控应用规则指定的参数列表,限制是否可以访问 //授权规则,指定白名单,就代表请求携带的参数OriginAuth,参数值必须是在流控应用指定的参数列表中,才可以访问,否者不允许 //黑名单相反 return httpServletRequest.getParameter("originAuth"); } }

    5.2 模拟授权请求

    /**
    * @param : [sentinelDesc]
    * @return : java.lang.String
    * @author : huayu
    * @date : 26/11/2022
    * @description : 测试 Sentinel-授权
    */
    @GetMapping("testSentinelAuth")
    public String testSentinelAuth(@RequestParam String sentinelDesc,
                                   @RequestParam String originAuth) {
    
        log.info("------ testSentinelHotParam 接口调用 ------ ");
    
        return "sentinelDesc:" + sentinelDesc + "\n,originAuth:" + originAuth;
    }
    

    5.3 白名单

    5.3.1 配置白名单

    5.3.2 测试

    5.4黑名单

    5.4.1 配置黑名单

    5.4.2 测试

    6、系统规则限流

    系统保护规则是从应用级别的入口流量进行控制,从单台机器的总体 Load、RT、入口 QPS 、CPU使用
    率和线程数五个维度监控应用数据,让系统尽可能跑在最大吞吐量的同时保证系统整体的稳定性。系统
    保护规则是应用整体维度的,而不是资源维度的,并且仅对入口流量 (进入应用的流量) 生效。

    • Load 自适应(仅对 Linux/Unix­like 机器生效):系统的 load1 作为启发指标,进行自适应系统保护。当系统load1 超过设定的启发值,且系统当前的并发线程数超过估算的系统容量时才会触发系统保护。系统容量由系统的 maxQps * minRt 估算得出。设定参考值一般是 CPU cores * 2.5。
    • CPU usage(1.5.0+ 版本):当系统 CPU 使用率超过阈值即触发系统保护(取值范围 0.0­ - 1.0),比较灵敏。
    • 平均 RT:当单台机器上所有入口流量的平均 RT 达到阈值即触发系统保护,单位是毫秒。
    • 并发线程数:当单台机器上所有入口流量的并发线程数达到阈值即触发系统保护。
    • 入口 QPS:当单台机器上所有入口流量的 QPS 达到阈值即触发系统保护

    6.1 模拟系统限流请求

    /**
    * @param : [sentinelDesc]
    * @return : java.lang.String
    * @author : huayu
    * @date : 26/11/2022
    * @description : 测试 Sentinel-系统
    * //设置一个, 全部请求都受限制
    */
    @GetMapping("testSentinelSys")
    public String testSentinelSys(@RequestParam String sentinelDesc) {
    
        log.info("------ testSentinelHotParam 接口调用 ------ ");
    
        return "sentinelDesc:" + sentinelDesc;
    }
    

    6.2 系统规则配置

    6.3 压测配置

    6.4 浏览器测试

    7、Sentinel 规则持久化

    Dashboard控制台来为每个Sentinel客户端设置各种各样的规则,但是这里有一个问题,就是这些规则默认是存放在内存中,每次微服务重新启动,设置的各种规则都会消失。

    7.1 方式1:本地文件(测试,线上不推荐)

    本地文件数据源会定时轮询文件的变更,读取规则。这样我们既可以在应用本地直接修改文件来更新规则,也可以通过 Sentinel 控制台推送规则。

    原理:首先 Sentinel 控制台通过 API 将规则推送至客户端并更新到内存中,接着注册的写数据源会将新的规则保存到本地的文件中。

    7.1.1 配置类

    创建配置类: SentinelFilePersistence

    点击查看代码
    import com.alibaba.csp.sentinel.command.handler.ModifyParamFlowRulesCommandHandler;
    import com.alibaba.csp.sentinel.datasource.*;
    import com.alibaba.csp.sentinel.init.InitFunc;
    import com.alibaba.csp.sentinel.slots.block.authority.AuthorityRule;
    import com.alibaba.csp.sentinel.slots.block.authority.AuthorityRuleManager;
    import com.alibaba.csp.sentinel.slots.block.degrade.DegradeRule;
    import com.alibaba.csp.sentinel.slots.block.degrade.DegradeRuleManager;
    import com.alibaba.csp.sentinel.slots.block.flow.FlowRule;
    import com.alibaba.csp.sentinel.slots.block.flow.FlowRuleManager;
    import com.alibaba.csp.sentinel.slots.block.flow.param.ParamFlowRule;
    import com.alibaba.csp.sentinel.slots.block.flow.param.ParamFlowRuleManager;
    import com.alibaba.csp.sentinel.slots.system.SystemRule;
    import com.alibaba.csp.sentinel.slots.system.SystemRuleManager;
    import com.alibaba.csp.sentinel.transport.util.WritableDataSourceRegistry;
    import com.alibaba.fastjson.JSON;
    import com.alibaba.fastjson.TypeReference;
    import lombok.extern.slf4j.Slf4j;
    
    import java.io.File;
    import java.io.IOException;
    import java.util.List;
    
    /**
     * Created On : 26/11/2022.
     * 

    * Author : huayu *

    * Description: MySentinelRulePersistenceDunc */ public class MySentinelRulePersistencefunc implements InitFunc{ // String ruleDir = System.getProperty("user.home") + "/sentinel/rules/"; //填写 规则存放的绝对路径 String ruleDir = "D:/KEGONGCHANG/DaiMa/IDEA/KH96/SpringCloud/springcloud-alibaba-96/kgcmall96-sentinel/sentinel/rules/"; // String ruleDir = "/kgcmall96-sentinel/sentinel/rules/"; String flowRulePath = ruleDir + "/flow-rule.json"; String degradeRulePath = ruleDir + "/degrade-rule.json"; String systemRulePath = ruleDir + "/system-rule.json"; String authorityRulePath = ruleDir + "/authority-rule.json"; String paramFlowRulePath = ruleDir + "/param-flow-rule.json"; @Override public void init() throws Exception { // 创建规则存放目录 this.mkdirIfNotExits(ruleDir); // 创建规则存放文件 this.createFileIfNotExits(flowRulePath); this.createFileIfNotExits(degradeRulePath); this.createFileIfNotExits(systemRulePath); this.createFileIfNotExits(authorityRulePath); this.createFileIfNotExits(paramFlowRulePath); // 注册一个可读数据源,用来定时读取本地的json文件,更新到规则缓存中 // 流控规则 ReadableDataSource> flowRuleRDS = new FileRefreshableDataSource<>(flowRulePath, flowRuleListParser); // 将可读数据源注册至FlowRuleManager,这样当规则文件发生变化时,就会更新规则到内存 FlowRuleManager.register2Property(flowRuleRDS.getProperty()); WritableDataSource> flowRuleWDS = new FileWritableDataSource<>( flowRulePath, this::encodeJson ); // 将可写数据源注册至transport模块的WritableDataSourceRegistry中 // 这样收到控制台推送的规则时,Sentinel会先更新到内存,然后将规则写入到文件中 WritableDataSourceRegistry.registerFlowDataSource(flowRuleWDS); // 降级规则 ReadableDataSource> degradeRuleRDS = new FileRefreshableDataSource<>( degradeRulePath, degradeRuleListParser ); DegradeRuleManager.register2Property(degradeRuleRDS.getProperty()); WritableDataSource> degradeRuleWDS = new FileWritableDataSource<>( degradeRulePath, this::encodeJson ); WritableDataSourceRegistry.registerDegradeDataSource(degradeRuleWDS); // 系统规则 ReadableDataSource> systemRuleRDS = new FileRefreshableDataSource<>( systemRulePath, systemRuleListParser ); SystemRuleManager.register2Property(systemRuleRDS.getProperty()); WritableDataSource> systemRuleWDS = new FileWritableDataSource<>( systemRulePath, this::encodeJson ); WritableDataSourceRegistry.registerSystemDataSource(systemRuleWDS); // 授权规则 ReadableDataSource> authorityRuleRDS = new FileRefreshableDataSource<>( authorityRulePath, authorityRuleListParser ); AuthorityRuleManager.register2Property(authorityRuleRDS.getProperty()); WritableDataSource> authorityRuleWDS = new FileWritableDataSource<>( authorityRulePath, this::encodeJson ); WritableDataSourceRegistry.registerAuthorityDataSource(authorityRuleWDS); // 热点参数规则 ReadableDataSource> paramFlowRuleRDS = new FileRefreshableDataSource<>( paramFlowRulePath, paramFlowRuleListParser ); ParamFlowRuleManager.register2Property(paramFlowRuleRDS.getProperty()); WritableDataSource> paramFlowRuleWDS = new FileWritableDataSource<>( paramFlowRulePath, this::encodeJson ); ModifyParamFlowRulesCommandHandler.setWritableDataSource(paramFlowRuleWDS); } private Converter> flowRuleListParser = source -> JSON.parseObject( source, new TypeReference>() { } ); private Converter> degradeRuleListParser = source -> JSON.parseObject( source, new TypeReference>() { } ); private Converter> systemRuleListParser = source -> JSON.parseObject( source, new TypeReference>() { } ); private Converter> authorityRuleListParser = source -> JSON.parseObject( source, new TypeReference>() { } ); private Converter> paramFlowRuleListParser = source -> JSON.parseObject( source, new TypeReference>() { } ); private void mkdirIfNotExits(String filePath) throws IOException { File file = new File(filePath); if (!file.exists()) { file.mkdirs(); } } private void createFileIfNotExits(String filePath) throws IOException { File file = new File(filePath); if (!file.exists()) { file.createNewFile(); } } private String encodeJson(T t) { return JSON.toJSONString(t); } }

    7.1.2 InitFunc 文件

    在resources文件下创建META-INF/services文件夹;

    创建文档com.alibaba.csp.sentinel.init.InitFunc,文档名就是配置类实现接口的全类名;

    在文件中添加第一步配置类的全类名即可;

    测试:启动服务,当访问系统规则限流接口,自动创建目录和文件,添加规则后,重启服务,刚进来,之前的配置看不到,必须先访问对应的入口才可以,要注意

    com.kgc.scda.config.MySentinelRulePersistencefunc
    

    8、Openfeign 远程调用

    8.1 依赖

    
    <dependency>
        <groupId>org.springframework.cloudgroupId>
        <artifactId>spring-cloud-starter-openfeignartifactId>
        <version>2.1.1.RELEASEversion>
    dependency>
    

    8.2 配置

    # 整合Sentinel 和OpenFeign ,默认关闭
    feign:
      sentinel:
        enabled: true  #开启
    

    8.3 注解

    著启动类: @EnableFeignClients
    
    接口:@FeignClient(value = "服务名")
    

    8.4 测试 (与单独使用Openfeign一样不在赘述)

    9、GateWay 服务网关

    9.1 依赖

    
    <dependency>
        <groupId>org.springframework.bootgroupId>
        <artifactId>spring-boot-starterartifactId>
    dependency>
    
    
    <dependency>
        <groupId>org.springframework.cloudgroupId>
        <artifactId>spring-cloud-starter-gatewayartifactId>
    dependency>
    

    9.2 配置

    # 端口
    server:
      port: 9606
    
    # 服务名
    spring:
      application:
        name: kgcmall-gatway
    
      cloud:
        #nacos 配置
        nacos:
          discovery:
            server-addr: 127.0.0.1:8848
    
        # 网关配置
        gateway:
          routes: # 路由,是list集合,可以配置多个路由
          	#product模块
            - id: kh96_route_first # 当前route路由的唯一标识,不能重复
              #uri: http://localhost:9602 # 路由转发的目标资源地址,不支持多负载调用,不利于扩展,不推荐
              uri: lb://kgcmall96-prod # lb 从nacos注册中心的服务列表中,根据指定的服务名,调用服务,推荐用法
              predicates: # 指定路由断言配置,支持多个断言,只要断言成功(满足路由转发条件),才会执行转发到目标资源地址访问
                - Path=/prod-gateway/** # 指定path路径断言,必须满足请求地址是/prod-gateway开始,才会执行路由转发
              filters: # 指定路由过滤配置,支持多个过滤器,在断言成功,执行路由转发时,对请求和响应数据进行过滤处理
                - StripPrefix=1 # 在请求断言成功后,执行路由转发时,自动去除第一层的访问路径/prod-gateway
            #user模块
            - id: kh96_route_second
              uri: lb://kgcmall96-user
              predicates:
                - Path=/user-gateway/**
              filters:
                - StripPrefix=1
    

    9.3 测试

    9.3.1 nacos

    9.3.2 请求测试

    9.3.2.1 通过gateway网关调用prod模块

    9.3.2.1 通过gateway网关调用user模块




  • 相关阅读:
    【C++】养很多鱼,只为观察向量的生长
    talbay---贝叶斯网络分析工具产品介绍
    多线程系列(十二) -生产者和消费者模型
    C# OpenCvSharp Mat操作-常用Mat数学运算
    基于FPGA的飞机的小游戏
    Android 阿里云OSS 上传文件,使外网可以直接访问
    一文搞懂│XSS攻击、SQL注入、CSRF攻击、DDOS攻击、DNS劫持
    PLL深度解析第一篇——PLL的知识图谱
    基于proe的阀体零件的机械加工工艺及夹具设计
    Pythony应用(02)-文字识别训练tesseract-ocr4
  • 原文地址:https://www.cnblogs.com/xiaoqigui/p/16931297.html