• 二分搜索算法框架解析


    文章目录

    一、寻找一个数(基本的二分搜索

    这个场景是最简单的,可能也是大家最熟悉的,即搜索一个数,如果存在,返回其索引,否则返回 -1。

    int binarySearch(int[] nums, int target) {
        int left = 0; 
        int right = nums.length - 1; // 注意
    
        while(left <= right) {
            int mid = left + (right - left) / 2;
            if(nums[mid] == target)
                return mid; 
            else if (nums[mid] < target)
                left = mid + 1; // 注意
            else if (nums[mid] > target)
                right = mid - 1; // 注意
        }
        return -1;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    此算法有什么缺陷?

    比如说给你有序数组 nums = [1,2,2,2,3]target2,此算法返回的索引是 2,没错。但是如果我想得到 target左侧边界,即索引 1,或者我想得到 target右侧边界,即索引 3,这样的话此算法是无法处理的。

    二、寻找左侧边界的二分搜索

    以下是最常见的代码形式,其中的标记是需要注意的细节:

    int left_bound(int[] nums, int target) {
        if (nums.length == 0) return -1;
        int left = 0;
        int right = nums.length; // 注意
        
        while (left < right) { // 注意
            int mid = left + (right - left) / 2;
            if (nums[mid] == target) {
                right = mid;
            } else if (nums[mid] < target) {
                left = mid + 1;
            } else if (nums[mid] > target) {
                right = mid; // 注意
            }
        }
        return left;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    1. 为什么 while 中是 < 而不是 <=?

      答:用相同的方法分析,因为 right = nums.length 而不是 nums.length - 1。因此每次循环的「搜索区间」是 [left, right) 左闭右开

      while(left < right) 终止的条件是 left == right,此时搜索区间 [left, left) 为空,所以可以正确终止。

    2. 为什么没有返回 -1 的操作?如果 nums 中不存在 target 这个值,怎么办?

      答:因为要一步一步来,先理解一下这个「左侧边界」有什么特殊含义:
      在这里插入图片描述

      ,函数的返回值(即 left 变量的值),表示的是小于target的值有多少个,取值区间是闭区间 [0, nums.length],所以我们简单添加两行代码就能在正确的时候 return -1

      while (left < right) {
      //…
      }
      // target 比所有数都大
      if (left == nums.length) return -1;
      // 类似之前算法的处理方式
      return nums[left] == target ? left : -1;

    3. 为什么 left = mid + 1,right = mid ?和之前的算法不一样?

      答:这个很好解释,因为我们的「搜索区间」是 [left, right) 左闭右开

    4. 为什么该算法能够搜索左侧边界?

      关键在于对于 nums[mid] == target 这种情况的处理:

      if (nums[mid] == target)
      right = mid;

    可见,找到 target 时不要立即返回,而是缩小「搜索区间」的上界 right,在区间 [left, mid) 中继续搜索,即不断向左收缩,达到锁定左侧边界的目的。

    能不能想办法把 right 变成 nums.length - 1,也就是继续使用两边都闭的「搜索区间」?这样就可以和第一种二分搜索在某种程度上统一起来了。

    要让搜索区间两端都闭,所以 right 应该初始化为 nums.length - 1while 的终止条件应该是 left == right + 1,也就是其中应该用 <=

    int left_bound(int[] nums, int target) {
        // 搜索区间为 [left, right]
        int left = 0, right = nums.length - 1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            // if else ...
        }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    因为搜索区间是两端都闭的,且现在是搜索左侧边界,所以 leftright 的更新逻辑如下:

    if (nums[mid] < target) {
        // 搜索区间变为 [mid+1, right]
        left = mid + 1;
    } else if (nums[mid] > target) {
        // 搜索区间变为 [left, mid-1]
        right = mid - 1;
    } else if (nums[mid] == target) {
        // 收缩右侧边界
        right = mid - 1;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    由于 while 的退出条件是 left == right + 1,所以当 targetnums 中所有元素都大时,会存在以下情况使得索引越界:

    在这里插入图片描述

    if (left >= nums.length || nums[left] != target)
        return -1;
    return left;
    
    • 1
    • 2
    • 3

    至此,整个算法就写完了,完整代码如下:

    int left_bound(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
        // 搜索区间为 [left, right]
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < target) {
                // 搜索区间变为 [mid+1, right]
                left = mid + 1;
            } else if (nums[mid] > target) {
                // 搜索区间变为 [left, mid-1]
                right = mid - 1;
            } else if (nums[mid] == target) {
                // 收缩右侧边界
                right = mid - 1;
            }
        }
        // 检查出界情况
        if (left >= nums.length || nums[left] != target) {
            return -1;
        }
        return left;
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    三、寻找右侧边界的二分查找

    类似寻找左侧边界的算法,这里也会提供两种写法,还是先写常见的左闭右开的写法,只有两处和搜索左侧边界不同

    左闭右开

    int right_bound(int[] nums, int target) {
        if (nums.length == 0) return -1;
        int left = 0, right = nums.length;
        
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] == target) {
                left = mid + 1; // 注意
            } else if (nums[mid] < target) {
                left = mid + 1;
            } else if (nums[mid] > target) {
                right = mid;
            }
        }
        return left - 1; // 注意
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    左闭右闭

    int right_bound(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < target) {
                left = mid + 1;
            } else if (nums[mid] > target) {
                right = mid - 1;
            } else if (nums[mid] == target) {
                // 这里改成收缩左侧边界即可
                left = mid + 1;
            }
        }
        // 这里改为检查 right 越界的情况,见下图
        if (right < 0 || nums[right] != target) {
            return -1;
        }
        return right;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    总结

    两端都闭,普通情况,寻找左侧边界,寻找右侧边界

    int binary_search(int[] nums, int target) {
        int left = 0, right = nums.length - 1; 
        while(left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < target) {
                left = mid + 1;
            } else if (nums[mid] > target) {
                right = mid - 1; 
            } else if(nums[mid] == target) {
                // 直接返回
                return mid;
            }
        }
        // 直接返回
        return -1;
    }
    
    int left_bound(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < target) {
                left = mid + 1;
            } else if (nums[mid] > target) {
                right = mid - 1;
            } else if (nums[mid] == target) {
                // 别返回,锁定左侧边界
                right = mid - 1;
            }
        }
        // 最后要检查 left 越界的情况
        if (left >= nums.length || nums[left] != target) {
    
    
    
            return -1;
        }
        return left;
    }
    
    int right_bound(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] < target) {
                left = mid + 1;
            } else if (nums[mid] > target) {
                right = mid - 1;
            } else if (nums[mid] == target) {
                // 别返回,锁定右侧边界
                left = mid + 1;
            }
        }
        // 最后要检查 right 越界的情况
        if (right < 0 || nums[right] != target) {
    
    
    
            return -1;
        }
        return right;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
  • 相关阅读:
    [Spring源码阅读]如何通过配置文件管理策略
    Open Interpreter:OpenAI Code Interpreter的开源实现|本地化|可联网
    【配置环境】SQLite数据库安装和编译以及VS下C++访问SQLite数据库
    FPGA双线性插值图像缩放详细讲解,上板验证稳定通过,提供两套工程源码
    离散数学复习:命题逻辑
    [开学]Vuex详解
    Docker技术_镜像备份
    【华为校招】【校招】【Java】字符串匹配(DP)
    spring boot 八、 sharding-jdbc 分库分表 按月分表
    Linux生产者消费者模型
  • 原文地址:https://blog.csdn.net/wcc178399/article/details/128064124