码农知识堂 - 1000bd
  •   Python
  •   PHP
  •   JS/TS
  •   JAVA
  •   C/C++
  •   C#
  •   GO
  •   Kotlin
  •   Swift
  • Hyperbolic geometry


    In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

    For any given line R and point P not on R, in the plane containing both line R and point P there are at least two distinct lines through P that do not intersect R.
    (Compare the above with Playfair’s axiom, the modern version of Euclid’s parallel postulate.)

    Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane.

    A modern use of hyperbolic geometry is in the theory of special relativity, particularly the Minkowski model.

    When geometers first realised they were working with something other than the standard Euclidean geometry, they described their geometry under many different names; Felix Klein finally gave the subject the name hyperbolic geometry to include it in the now rarely used sequence elliptic geometry (spherical geometry), parabolic geometry (Euclidean geometry), and hyperbolic geometry. In the former Soviet Union, it is commonly called Lobachevskian geometry, named after one of its discoverers, the Russian geometer Nikolai Lobachevsky.

    This page is mainly about the 2-dimensional (planar) hyperbolic geometry and the differences and similarities between Euclidean and hyperbolic geometry. See hyperbolic space for more information on hyperbolic geometry extended to three and more dimensions.

    在这里插入图片描述

    Lines through a given point P and asymptotic to line R

    Contents

    • 1 Properties
      • 1.1 Relation to Euclidean geometry
      • 1.2 Lines
        • 1.2.1 Non-intersecting / parallel lines
      • 1.3 Circles and disks
      • 1.4 Hypercycles and horocycles
      • 1.5 Triangles
      • 1.6 Regular apeirogon
      • 1.7 Tessellations
    • 2 Standardized Gaussian curvature
      • 2.1 Cartesian-like coordinate systems
      • 2.2 Distance
    • 3 History
      • 3.1 19th-century developments
      • 3.2 Philosophical consequences
      • 3.3 Geometry of the universe (spatial dimensions only)
      • 3.4 Geometry of the universe (special relativity)
    • 4 Physical realizations of the hyperbolic plane
    • 5 Models of the hyperbolic plane
      • 5.1 The Beltrami–Klein model
      • 5.2 The Poincaré disk model
      • 5.3 The Poincaré half-plane model
      • 5.4 The hyperboloid model
      • 5.5 The hemisphere model
      • 5.6 The Gans model
      • 5.7 The band model
      • 5.8 Connection between the models
    • 6 Isometries of the hyperbolic plane
    • 7 Hyperbolic geometry in art
    • 8 Higher dimensions
    • 9 Homogeneous structure
    • 10 See also

    1 Properties

    1.1 Relation to Euclidean geometry

    1.2 Lines

    1.2.1 Non-intersecting / parallel lines

    1.3 Circles and disks

    1.4 Hypercycles and horocycles

    1.5 Triangles

    1.6 Regular apeirogon

    1.7 Tessellations

    2 Standardized Gaussian curvature

    2.1 Cartesian-like coordinate systems

    2.2 Distance

    3 History

    3.1 19th-century developments

    3.2 Philosophical consequences

    3.3 Geometry of the universe (spatial dimensions only)

    3.4 Geometry of the universe (special relativity)

    4 Physical realizations of the hyperbolic plane

    5 Models of the hyperbolic plane

    5.1 The Beltrami–Klein model

    5.2 The Poincaré disk model

    5.3 The Poincaré half-plane model

    5.4 The hyperboloid model

    5.5 The hemisphere model

    5.6 The Gans model

    5.7 The band model

    5.8 Connection between the models

    6 Isometries of the hyperbolic plane

    7 Hyperbolic geometry in art

    8 Higher dimensions

    9 Homogeneous structure

    10 See also

  • 相关阅读:
    关于竞品分析怎么做?掌握这5点就够了!
    运动想象 (MI) 迁移学习系列 (9) : 数据对齐(EA)
    android Handler
    探秘扫雷游戏的C语言实现
    BUUCTF SimpleRev
    Spring如何处理线程的并发问题?
    MongoDB的使用
    Aip接口自动化测试框架pytest+allure+request+jsonpath+excle
    Leetcode 135. 分发糖果
    【荣耀内推】2023届荣耀校招开启啦
  • 原文地址:https://blog.csdn.net/qq_66485519/article/details/128060918
  • 最新文章
  • 攻防演习之三天拿下官网站群
    数据安全治理学习——前期安全规划和安全管理体系建设
    企业安全 | 企业内一次钓鱼演练准备过程
    内网渗透测试 | Kerberos协议及其部分攻击手法
    0day的产生 | 不懂代码的"代码审计"
    安装scrcpy-client模块av模块异常,环境问题解决方案
    leetcode hot100【LeetCode 279. 完全平方数】java实现
    OpenWrt下安装Mosquitto
    AnatoMask论文汇总
    【AI日记】24.11.01 LangChain、openai api和github copilot
  • 热门文章
  • 十款代码表白小特效 一个比一个浪漫 赶紧收藏起来吧!!!
    奉劝各位学弟学妹们,该打造你的技术影响力了!
    五年了,我在 CSDN 的两个一百万。
    Java俄罗斯方块,老程序员花了一个周末,连接中学年代!
    面试官都震惊,你这网络基础可以啊!
    你真的会用百度吗?我不信 — 那些不为人知的搜索引擎语法
    心情不好的时候,用 Python 画棵樱花树送给自己吧
    通宵一晚做出来的一款类似CS的第一人称射击游戏Demo!原来做游戏也不是很难,连憨憨学妹都学会了!
    13 万字 C 语言从入门到精通保姆级教程2021 年版
    10行代码集2000张美女图,Python爬虫120例,再上征途
Copyright © 2022 侵权请联系2656653265@qq.com    京ICP备2022015340号-1
正则表达式工具 cron表达式工具 密码生成工具

京公网安备 11010502049817号