• FlinkSql+Stream综合使用+广播流


    状态管理

    请添加图片描述
    请添加图片描述

    状态的分类

    请添加图片描述
    请添加图片描述

    • State
      • ManagerState–开发中推荐使用:Flink自动管理/优化,支持多种数据结构
        • KeyState–只能在keyedStream上使用,支持多种数据结构
        • OperatorState–一般用在Source上,支持ListState
      • RawState–完全有用户自己管理,只支持byte[],只能在自定义Operator上使用
        • OperatorState

    KeyState案例

    public class KeyStateDemo {
        /**
         * 使用KeyState中得ValueState获取数据中的最大值(实际中直接使用maxBy即可)
         * 编码步骤;
         *  1. 定义一个状态用来存放最大值
         *  private transient ValueState maxValueState;
         *  2. 创建一个状态描述对象
         *  ValueStateDescriptor descriptor = new ValueStateDescriptor(“maxValueState”,Long.class)
         *  3. 根据状态描述符获取State
         *  maxValueState = getRuntimeContext().getState(maxValueStateDescriptor)
         */
        public static void main(String[] args) throws Exception {
    
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setParallelism(1);
            DataStreamSource<Tuple2<String, Integer>> tupleDs = env.fromElements(
                    Tuple2.of("北京", 3),
                    Tuple2.of("上海", 6),
                    Tuple2.of("北京", 8),
                    Tuple2.of("重庆", 9),
                    Tuple2.of("天津", 6),
                    Tuple2.of("北京", 3),
                    Tuple2.of("上海", 22)
            );
            // 开发使用
            SingleOutputStreamOperator<Tuple2<String, Integer>> result1 = tupleDs.keyBy(t -> t.f0).maxBy(1);
            SingleOutputStreamOperator<Tuple3<String, Integer, Integer>> result2 = tupleDs.keyBy(t -> t.f0).map(new RichMapFunction<Tuple2<String, Integer>, Tuple3<String, Integer, Integer>>() {
    
                //1 定义一个状态用来存放最大值
                private ValueState<Integer> maxValueState;
                // 初始化状态
    
    
                @Override
                public void open(Configuration parameters) throws Exception {
                    // 2 创建状态描述器
                    ValueStateDescriptor<Integer> stateDescriptor = new ValueStateDescriptor<>("maxValueState", Integer.class);
                    // 3 根据状态描述器获取/初始化状态
                    maxValueState = getRuntimeContext().getState(stateDescriptor);
                }
    
                //  使用状态
                @Override
                public Tuple3<String, Integer, Integer> map(Tuple2<String, Integer> value) throws Exception {
                    Integer currentValue = value.f1;
                    Integer historyValue = maxValueState.value();
                    if (historyValue == null || currentValue > historyValue) {
                        historyValue = currentValue;
                        maxValueState.update(historyValue);
                        return Tuple3.of(value.f0, currentValue, historyValue);
                    } else {
                        maxValueState.update(historyValue);
                        return Tuple3.of(value.f0, currentValue, historyValue);
                    }
                }
            });
            result1.print();
            result2.printToErr();
            env.execute();
        }
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62

    模拟KafkaSource 功力不够,先简单熟悉

    public class OperateStateDemo {
        /**
         * 需求 使用ListState存储offset-->模拟kafka的offset
         *
         * @param args
         * @throws Exception
         */
        public static void main(String[] args) throws Exception {
            // TODO Source
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
            env.setParallelism(1); // 设置并行度为1
            // CheckPoint和重启策略,先照抄
            env.enableCheckpointing(1000); // 每隔1s执行一次Checkpoint
            env.setStateBackend(new FsStateBackend("file:///F:/ckp"));
            env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
            env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
            // 固定延迟重启策略:程序出现异常的时候,重启两次,每次延迟3秒重启,超过2次程序退出
            env.setRestartStrategy(RestartStrategies.fixedDelayRestart(2, 3000));
            // TODO Source
            DataStreamSource<String> ds = env.addSource(new MyKafkaSource()).setParallelism(1);
    
            // TODO Transformation
    
            // TODO Sink
            ds.print();
            env.execute();
    
        }
    
        // s使用Operator中得ListState模拟KafkaSource进行offset维护
        public static class MyKafkaSource extends RichParallelSourceFunction<String> implements CheckpointedFunction {
            // 1 声明ListState
            private ListState<Long> offsetState = null;
            private Long offset = 0L;
    
            private Boolean flag = true;
    
            // 2 初始化/创建ListState
            @Override
            public void initializeState(FunctionInitializationContext context) throws Exception {
                ListStateDescriptor<Long> stateDescriptor = new ListStateDescriptor<>("offsetState", Long.class);
                offsetState = context.getOperatorStateStore().getListState(stateDescriptor);
            }
    
            //3  使用state
            @Override
            public void run(SourceContext<String> ctx) throws Exception {
    
                while (flag) {
    
                    Iterator<Long> iterator = offsetState.get().iterator();
                    if (iterator.hasNext()) {
                        offset = iterator.next();
                    }
                    offset += 1;
                    int subtaskId = getRuntimeContext().getIndexOfThisSubtask();
                    ctx.collect("subTaskId  " + subtaskId + ", 当前offset值为  " + offset);
                    Thread.sleep(1000);
                    if (offset % 5 == 0) {
                        throw new RuntimeException("bug 出现了");
                    }
    
                }
    
    
            }
    
            // 4 state 持久化
            // 该方法会定时执行将state状态从内存持久化到Checkpoint磁盘目录
            @Override
            public void snapshotState(FunctionSnapshotContext functionSnapshotContext) throws Exception {
                offsetState.clear();// 清理磁盘数据并存入Checkpoint磁盘目录中
                offsetState.add(offset);
            }
    
            @Override
            public void cancel() {
                flag = false;
            }
        }
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83

    Flink容错机制

    State Vs CheckPoint

    • State
      维护/存储 的是一个Operator的运行状态/历史值,是维护在内存中
      一般指一个具体的Operator的状态(operator的状态表示一些算子在运行过程中会产生一些历史结果,如前面的maxBy底层会维护当前的最大值,也就是会维护一个keyedOperator,这个State里面存放就是maxBy这个Operator中得最大值)
      State数据默认保存子java 的堆内存中/TaksManager节点上
      State可以被记录,在失败的情况下数据还可以恢复
    • CheckPoint
      某一时刻,Flink中的所有的Operator的当前State的全局快照,一般存在磁盘上
      表示了一个Flink Job在一个特定时刻的一份全局状态快照,即包含了所有Operator的状态
      可以理解为CheckPoint是把State数据定时持久化存储了
      比如KafkaConsumer算子中维护的Offset状态,当任务重新恢复的时候可以从Checkpoint中获取

    CheckPoint原理

    请添加图片描述
    0. Flink的JobManager创建CheckpointCoordinator

    1. Coordinator向所有的SourceOperator发送Barrier栅栏(理解未执行Checkpoint的信号)
    2. SourceOperator接收到Barrier之后,暂停当前的操作(暂停的时间很短,因为后续的写快照是异步的),并制定State快照,然后将自己的快照保存到指定的介质中(如HDFS),一切ok之后向Coordinator汇报并将Barrier发送给下游的其他Operator
    3. 其他的 如TransformationOperation接收到Barrier,重复第2步,最后将Barrier发送给sink
    4. Sink接收到Barrier之后重复第2步
    5. Coordinator接收到所有的Operator的执行ok的汇报结果,认为本次快照执行成功

    State状态后端/State存储介质

    注意:
    前面学习了Checkpoint其实就是Flink中某一时刻,所有的Operator的全局快照,
    那么快照存储存储的地方叫做 状态后端

    请添加图片描述
    请添加图片描述
    请添加图片描述
    使用RocksDB引入依赖
    请添加图片描述
    请添加图片描述

    状态恢复和重启策略

    重启策略分类

    • 默认重启策略
      配置了Checkpoint的情况下不做任务配置:默认无限重启并自动恢复,可以解决小问题,但可能会隐藏真正的bug

    • 无重启策略
      有bug立即抛出
      env.setrestartStrategy(RestartStrategies.noRestart())

    • 固定延迟重启策略(开发中使用)

    job 失败,重启3次,每次间隔5s

    env.setRestartStrategy(RestartStrategies.fixeDelayRestart(
    3,// 最多重启次数
    Time.of(5,TimeUnit.SECONDS)
    ))

    • 失败重启策略(开发偶尔使用)

    如果5分钟job失败不超过3次,自动重启,每次重启间隔3s

    env.setRestartStrategy(RestartStrategies.failureRateRestart(
    3,
    Time.of(5,TimeUnit.MINUTES),
    Time.of(3,TimeUnit.SECONDS)
    ))

    手动重启
    基于flink 浏览器客户端

    SavePoint

    请添加图片描述

    请添加图片描述

    Flink TableAPI&SQL

    请添加图片描述

    请添加图片描述
    1.11 开始,默认使用Blink

     	 <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-table-api-java-bridge_${scala.binary.version}artifactId>
                <version>${flink.version}version>
            dependency>
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-table-planner-blink_${scala.binary.version}artifactId>
                <version>${flink.version}version>
            dependency>
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-table-commonartifactId>
                <version>${flink.version}version>
            dependency>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    案例

    依赖

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0modelVersion>
    
        <groupId>com.atguigugroupId>
        <artifactId>Flink-demoartifactId>
        <version>1.0-SNAPSHOTversion>
        <packaging>jarpackaging>
    
        <name>Flink-demoname>
        <url>http://maven.apache.orgurl>
    
        <properties>
            <flink.version>1.13.0flink.version>
            <java.version>1.8java.version>
            <scala.binary.version>2.12scala.binary.version>
            <slf4j.version>1.7.30slf4j.version>
        properties>
        <dependencies>
            
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-javaartifactId>
                <version>${flink.version}version>
            dependency>
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-streaming-java_${scala.binary.version}artifactId>
                <version>${flink.version}version>
            dependency>
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-clients_${scala.binary.version}artifactId>
                <version>${flink.version}version>
            dependency>
            
            <dependency>
                <groupId>org.slf4jgroupId>
                <artifactId>slf4j-apiartifactId>
                <version>${slf4j.version}version>
            dependency>
            <dependency>
                <groupId>org.slf4jgroupId>
                <artifactId>slf4j-log4j12artifactId>
                <version>${slf4j.version}version>
            dependency>
            <dependency>
                <groupId>org.apache.logging.log4jgroupId>
                <artifactId>log4j-to-slf4jartifactId>
                <version>2.14.0version>
            dependency>
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-sql-connector-kafka_${scala.binary.version}artifactId>
                <version>${flink.version}version>
            dependency>
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-connector-kafka_${scala.binary.version}artifactId>
                <version>${flink.version}version>
            dependency>
            <dependency>
                <groupId>org.apache.bahirgroupId>
                <artifactId>flink-connector-redis_2.11artifactId>
                <version>1.0version>
            dependency>
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-table-api-java-bridge_${scala.binary.version}artifactId>
                <version>${flink.version}version>
            dependency>
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-table-planner-blink_${scala.binary.version}artifactId>
                <version>${flink.version}version>
            dependency>
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-table-commonartifactId>
                <version>${flink.version}version>
            dependency>
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-streaming-scala_${scala.binary.version}artifactId>
                <version>${flink.version}version>
            dependency>
    
            <dependency>
                <groupId>org.projectlombokgroupId>
                <artifactId>lombokartifactId>
                <version>1.18.24version>
            dependency>
    
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-csvartifactId>
                <version>${flink.version}version>
            dependency>
            <dependency>
                <groupId>org.apache.flinkgroupId>
                <artifactId>flink-jsonartifactId>
                <version>${flink.version}version>
            dependency>
        dependencies>
        <build>
            <plugins>
                <plugin>
                    <groupId>org.apache.maven.pluginsgroupId>
                    <artifactId>maven-assembly-pluginartifactId>
                    <version>3.0.0version>
                    <configuration>
                        <descriptorRefs>
                            <descriptorRef>jar-with-dependenciesdescriptorRef>
                        descriptorRefs>
                    configuration>
                    <executions>
                        <execution>
                            <id>make-assemblyid>
                            <phase>packagephase>
                            <goals>
                                <goal>singlegoal>
                            goals>
                        execution>
                    executions>
                plugin>
            plugins>
        build>
    project>
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    public class SqlDemo1 {
        public static void main(String[] args) throws Exception {
            demo3();
    
        }
    
        /**
         * 将DataStream数据转Table和View然后使用Sql进行统计查询
         *
         * @throws Exception
         */
        public static void demo1() throws Exception {
            // TODO env
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
            StreamTableEnvironment tenv = StreamTableEnvironment.create(env, settings);
            // TODO source
            DataStreamSource<Order> orderA = env.fromElements(
                    new Order(1L, "beer", 3),
                    new Order(1L, "diaper", 4),
                    new Order(3L, "rubber", 2),
                    new Order(3L, "ali", 3),
                    new Order(1L, "tom", 4)
            );
            DataStreamSource<Order> orderB = env.fromElements(
                    new Order(1L, "beer", 3),
                    new Order(1L, "diaper", 4),
                    new Order(3L, "rubber", 2),
                    new Order(3L, "ali", 3),
                    new Order(1L, "tom", 4)
            );
            // TODO transform 转化table 和 view
            Table tableA = tenv.fromDataStream(orderA, $("user"), $("product"), $("amount"));
            tableA.printSchema();
            System.out.println(tableA);
    
            tenv.createTemporaryView("tableB", orderB, $("user"), $("product"), $("amount"));
    
            String sql = "select * from " + tableA + " where  amount > 2 union select * from tableB where amount > 1";
            Table resultTable = tenv.sqlQuery(sql);
            resultTable.printSchema();
            System.out.println(resultTable);
    
            // 将table 转为dataStream
    //      将计算后的数据append到结果DataStream中去
    //        DataStream resultDS = tenv.toAppendStream(resultTable, Order.class);
            // 将计算后的性的数据在DataStream元数据的基础上更新true或是删除false
            DataStream<Tuple2<Boolean, Order>> resultDS = tenv.toRetractStream(resultTable, Order.class);
            resultDS.print();
            // TODO exe
            env.execute();
        }
    
        /**
         * 使用SQL和Table两种方式做WordCount
         *
         * @throws Exception
         */
        public static void demo2() throws Exception {
            // TODO env
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
            StreamTableEnvironment tenv = StreamTableEnvironment.create(env, settings);
            // TODO source
            DataStreamSource<WC> wordsDs = env.fromElements(
                    new WC("hello", 1L),
                    new WC("word", 1L),
                    new WC("hello", 1L)
            );
          /*  tenv.createTemporaryView("t_words",wordsDs,$("word"),$("frequency"));
            String sql = "select word,sum(frequency) as frequency from t_words group by word";
            Table table = tenv.sqlQuery(sql);
            DataStream> ds = tenv.toRetractStream(table, WC.class);
            ds.print();*/
    
           /* Table table = tenv.fromDataStream(wordsDs, $("word"), $("frequency"));
            String sql = "select word,sum(frequency) as frequency from "+table+" group by word";
            Table table1 = tenv.sqlQuery(sql);
            DataStream> ds = tenv.toRetractStream(table1, WC.class);
            ds.print();*/
    
            Table table = tenv.fromDataStream(wordsDs, $("word"), $("frequency"));
            Table select = table.groupBy($("word"))
                    .select($("word"), $("frequency").sum().as("frequency"));
            DataStream<Tuple2<Boolean, Row>> ds = tenv.toRetractStream(select, Row.class);
            ds.print();
            // TODO exe
            env.execute();
        }
    
    
        /**
         * 使用Flink SQL来统计5秒内 每个用户的 订单数、订单的最大金额、订单的最小金额
         * 

    * 也就是每隔5s统计最近5s的每隔用户的订单总数,订单的最大金额,订单的最小金额 *

    * WaterMarker+时间时间+窗口 : SQL 实现 * * @throws Exception */ public static void demo3() throws Exception { // TODO env StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build(); StreamTableEnvironment tenv = StreamTableEnvironment.create(env, settings); DataStreamSource<TOrder> ds = env.addSource(new RichSourceFunction<TOrder>() { private Boolean flag = true; @Override public void run(SourceContext<TOrder> sourceContext) throws Exception { Random random = new Random(); SimpleDateFormat df = new SimpleDateFormat("HH:mm:ss"); while (flag) { String orderId = UUID.randomUUID().toString(); int userId = random.nextInt(2); int money = random.nextInt(101); long eventTime = System.currentTimeMillis() - random.nextInt(5) * 1000; TOrder tOrder = new TOrder(orderId, userId, money, eventTime, df.format(new Date(eventTime))); sourceContext.collect(tOrder); Thread.sleep(1000); } } @Override public void cancel() { flag = false; } }); SingleOutputStreamOperator<TOrder> wDS = ds.assignTimestampsAndWatermarks( WatermarkStrategy.<TOrder>forBoundedOutOfOrderness(Duration.ofSeconds(3)) .withTimestampAssigner((o, l) -> o.eventTime) ); tenv.createTemporaryView("t_order", wDS, $("orderId"), $("userId"), $("money"), $("eventTime").rowtime(), $("timeString")); String sql = "select userId,count(orderId) as orderCount,max(money) as maxMoney,min(money) as minMoney from t_order " + "group by userId,tumble(eventTime,INTERVAL '5' SECOND)"; Table table = tenv.sqlQuery(sql); DataStream<Tuple2<Boolean, Row>> rDS = tenv.toRetractStream(table, Row.class); rDS.print(); // TODO exe env.execute(); } @Data @AllArgsConstructor @NoArgsConstructor public static class TOrder { public String orderId; public Integer userId; public Integer money; public Long eventTime; public String timeString; } @Data @NoArgsConstructor @AllArgsConstructor public static class WC { public String word; public Long frequency; } @Data @NoArgsConstructor @AllArgsConstructor public static class Order { private Long user; private String product; private Integer amount; } }

    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177

    FlinkSql 直连 kafka

    public class SqlKafka {
        /**
         * flink SQL直接读写kafka
         * {"user_id":"1","page_id":"1","status":"success"}
         * {"user_id":"1","page_id":"1","status":"success"}
         * {"user_id":"1","page_id":"1","status":"success"}
         * {"user_id":"1","page_id":"1","status":"fail"}
         * @param args
         */
        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            EnvironmentSettings settings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
            StreamTableEnvironment tenv = StreamTableEnvironment.create(env, settings);
            String inputSQL = "CREATE TABLE input_kafka (`user_id` BIGINT,`page_id` BIGINT,`status` STRING ) " +
                    "with (" +
                    "'connector'='kafka','topic'='input_kafka','properties.bootstrap.servers'='hadoop102:9092', " +
                    "'properties.group_id'='testGroup','scan.startup.mode'='latest-offset','format'='json')";
            TableResult inputTable = tenv.executeSql(
                    inputSQL
            );
            // TODO Transformation
    
            String sql = "select * from input_kafka where status='success'";
            Table etl = tenv.sqlQuery(sql);
    //        tenv.toRetractStream(etl, Row.class ).print();
            // TODO Sink
            TableResult outputTable= tenv.executeSql(
                    "CREATE TABLE output_kafka (`user_id` BIGINT,`page_id` BIGINT,`status` STRING )" +
                            "with (" +
                            "'connector'='kafka','topic'='input_kafka','properties.bootstrap.servers'='hadoop102:9092'," +
                            "'sink.partitioner'='round-robin','format'='json')"
            );
    
    
            tenv.executeSql("insert into output_kafka select * from "+etl);
            env.execute();
        }
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39

    双十一大屏
    请添加图片描述
    请添加图片描述

    import lombok.AllArgsConstructor;
    import lombok.Data;
    import lombok.NoArgsConstructor;
    import org.apache.commons.lang.StringUtils;
    import org.apache.commons.lang.time.FastDateFormat;
    import org.apache.flink.api.common.functions.AggregateFunction;
    import org.apache.flink.api.java.tuple.Tuple2;
    import org.apache.flink.streaming.api.datastream.DataStreamSource;
    import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    import org.apache.flink.streaming.api.functions.source.SourceFunction;
    import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
    import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
    import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
    import org.apache.flink.streaming.api.windowing.time.Time;
    import org.apache.flink.streaming.api.windowing.triggers.ContinuousProcessingTimeTrigger;
    import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
    import org.apache.flink.util.Collector;
    
    import java.math.BigDecimal;
    import java.math.RoundingMode;
    import java.text.SimpleDateFormat;
    import java.util.List;
    import java.util.PriorityQueue;
    import java.util.Random;
    import java.util.stream.Collectors;
    
    public class BigScreemDemo {
        public static void main(String[] args) throws Exception {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
    
            DataStreamSource<Tuple2<String, Double>> orderDS = env.addSource(new MySource());
            // TODO transform--:初步聚合:每隔1s聚合一下各个分类的销售总额
            SingleOutputStreamOperator<CategoryPojo> tempAggResult = orderDS.keyBy(t -> t.f0)
                    // 窗口从当前时间的 00:00:00开始
                    .window(TumblingProcessingTimeWindows.of(Time.days(1), Time.hours(-8)))
                    // 自定义触发时机 :每隔1秒触发
                    .trigger(ContinuousProcessingTimeTrigger.of(Time.seconds(1)))
    //               简单聚合
    //                .sum()
    //                自定义聚合
                    .aggregate(new PriceAggregate(), new WindowResult());
    
            tempAggResult.keyBy(CategoryPojo::getDateTime)
                    .window(TumblingProcessingTimeWindows.of(Time.seconds(1)))
                    .process(new FinalResultWindowProcess());
    
    
            env.execute();
        }
    
        private static class PriceAggregate implements AggregateFunction<Tuple2<String, Double>, Double, Double> {
            // 初始化累加器
            @Override
            public Double createAccumulator() {
                return 0D;
            }
    
            // 把数据累加到累加器上
            @Override
            public Double add(Tuple2<String, Double> value, Double accumulator) {
                return value.f1 + accumulator;
            }
    
            // 获取累加结果
            @Override
            public Double getResult(Double accumulator) {
                return accumulator;
            }
    
            // 合并各个Subtask结果
            @Override
            public Double merge(Double a, Double b) {
                return a + b;
            }
        }
    
        // 自定义窗口函数,指定窗口数据手机规则
        private static class WindowResult implements WindowFunction<Double, CategoryPojo, String, TimeWindow> {
            private FastDateFormat df = FastDateFormat.getInstance("yyyy-MM-dd HH:mm:ss");
    
            @Override
            public void apply(String category, TimeWindow window, Iterable<Double> input, Collector<CategoryPojo> out) throws Exception {
                long currentTimeMillis = System.currentTimeMillis();
                String dateTime = df.format(currentTimeMillis);
                Double totalPrice = input.iterator().next();
                out.collect(new CategoryPojo(category, totalPrice, dateTime));
            }
        }
    
        private static class FinalResultWindowProcess extends ProcessWindowFunction<CategoryPojo, Object, String, TimeWindow> {
            /**
             * 下面的Key/dataTime表示当前这1s的时间
             * elements:表示截止到当前这1s各个分类的销售总额
             *
             * @param dataTime
             * @param context
             * @param elements
             * @param out
             * @throws Exception
             */
            @Override
            public void process(String dataTime,
                                ProcessWindowFunction<CategoryPojo, Object, String, TimeWindow>.Context context,
                                Iterable<CategoryPojo> elements,
                                Collector<Object> out) throws Exception {
    //            // 1 实时计算当前0点截止到当前时间的销售总额
                double total = 0D; // 用来记录销售总额
                // 创建小顶锥
                PriorityQueue<CategoryPojo> queue = new PriorityQueue<>(
                        3,// 初始容量
                        // 正常排序,就是小的在前,大的在后,也就是c1>c2的时候返回1,也就是升序,也就是小顶锥
                        (c1, c2) -> c1.getTotalPrice() >= c2.getTotalPrice() ? 1 : -1
                );
                for (CategoryPojo element : elements) {
                    Double price = element.getTotalPrice();
                    total += price;
                    if (queue.size() < 3) {
                        queue.add(element);
                    } else {
                        if (price >= queue.peek().getTotalPrice()) {
                            queue.poll();
                            queue.add(element);
                        }
                    }
                }
                List<String> top3List = queue.stream()
                        .sorted((c1, c2) -> c1.getTotalPrice() >= c2.getTotalPrice() ? -1 : 1)
                        .map(c -> "分类:" + c.getTotalPrice() + " 金额: " + c.getTotalPrice())
                        .collect(Collectors.toList());
    
                // 每秒更新
                double roundResult = new BigDecimal(total).setScale(2, RoundingMode.HALF_UP).doubleValue();
                System.out.println("时间: " + dataTime + "  总金额:" + roundResult);
                System.out.println("top3 : \n" + StringUtils.join(top3List, "\n"));
    
            }
        }
    }
    
    @Data
    @AllArgsConstructor
    @NoArgsConstructor
    class CategoryPojo {
        private String category; // 分类名称
        private Double totalPrice; // 该分类销售总额
        private String dateTime; // 截止当前时间的时间,本来应该是EventTime,这里使用系统时间
    }
    
    class MySource implements SourceFunction<Tuple2<String, Double>> {
        private Boolean flag = true;
        private String[] categorys = {"女装", "男装", "图书", "家电", "洗护", "美妆", "运动", "游戏", "户外", "家具", "乐器", "办公"};
        private Random random = new Random();
    
        @Override
        public void run(SourceContext<Tuple2<String, Double>> sourceContext) throws Exception {
            while (flag) {
                int index = random.nextInt(categorys.length);
                String category = categorys[index];
                double price = random.nextDouble() * 100;
                sourceContext.collect(Tuple2.of(category, price));
            }
        }
    
        @Override
        public void cancel() {
            flag = false;
        }
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170

    请添加图片描述
    超时自动好评

    public class OrderAutomaticFavorableComments {
        public static void main(String[] args) throws Exception {
    
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            // <用户Id,订单Id,订单生成时间>
            DataStreamSource<Tuple3<String, String, Long>> orderDS = env.addSource(new MySource());
            long interval = 5000L;// 超时时间
            // 分组后 使用自定义KeyedProcessFunction完成定时判断超时订单并自动好评
            orderDS.keyBy(t->t.f0)
                    .process(new TimeProcessFunction(interval));
    
            env.execute();
        }
    
    
        public static class MySource implements SourceFunction<Tuple3<String, String, Long>> {
    
            private Boolean flag = true;
    
            @Override
            public void run(SourceContext<Tuple3<String, String, Long>> sourceContext) throws Exception {
                Random random = new Random();
                while (flag) {
                    String userId = random.nextInt(5) + "";
                    String orderId = UUID.randomUUID().toString();
                    long currentTimeMillis = System.currentTimeMillis();
                    sourceContext.collect(Tuple3.of(userId,orderId,currentTimeMillis));
                }
            }
    
            @Override
            public void cancel() {
                flag= false;
            }
        }
    
        private static class TimeProcessFunction extends KeyedProcessFunction<String,Tuple3<String, String,Long>,Object> {
            private MapState<String,Long> mapState = null;
    
            private Long interval;
            public TimeProcessFunction(long interval){
                this.interval = interval;
            }
            // 初始化
            @Override
            public void open(Configuration parameters) throws Exception {
                MapStateDescriptor<String, Long> mapStateDescriptor = new MapStateDescriptor<>("mapState", String.class, Long.class);
                mapState= getRuntimeContext().getMapState(mapStateDescriptor);
            }
    
            @Override
            public void processElement(Tuple3<String, String, Long> value,
                                       KeyedProcessFunction<String, Tuple3<String, String, Long>, Object>.Context context,
                                       Collector<Object> out) throws Exception {
                // Tuple3 <用户Id,订单id,订单生成时间> value里面是当前进来的数据里面有订单生成时间
                // 把订单数据保存到状态中 ,为了以后从定时器中查出来
                mapState.put(value.f1,value.f2);
                // 该订单在value.f2 + interval 时过期/到期,这时如果没有好评的话就需要系统给与默认好评
                // 注册一个定时器在value.f2 + interval + interval 时检查是否需要默认好评
                context.timerService().registerProcessingTimeTimer(value.f2+interval);
            }
    
            @Override
            public void onTimer(long timestamp,
                                KeyedProcessFunction<String, Tuple3<String, String, Long>, Object>.OnTimerContext ctx,
                                Collector<Object> out) throws Exception {
                // 检查历史订单数据(在状态存储)
                // 遍历取出状态中的订单数据
                Iterator<Map.Entry<String, Long>> iterator = mapState.iterator();
                while (iterator.hasNext()) {
                    Map.Entry<String, Long> map = iterator.next();
                    String orderId = map.getKey();
                    Long orderTime = map.getValue();
                    //先判断好评--实际中应该去调用订单系统看是否好评,我们这里洗个方法模拟
                    if(!isFavorable(orderId)){
                        // 判断是否超时
                        if (System.currentTimeMillis() - orderTime >=interval) {
                            System.out.println("orderId:" + orderId + "  该订单已超时未好评,系统自动给与好评");
                        }
                    }else {
                        System.out.println("orderId:" + orderId + "  订单已经评价");
                    }
                    // 移除状态,避免重复处理
                    iterator.remove();
                    mapState.remove(orderId);
                }
            }
    
            private boolean isFavorable(String orderId) {
                return orderId.hashCode() % 2 == 0;
            }
        }
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94

    广播流

    请添加图片描述

    请添加图片描述
    此逻辑 未处理完

    public class BoardCastDemo {
    
    
        /**
         * 有一个事件流--用户行为日志,里面有用户Id,但是没有用户详细信息
         * 有一个配置流--规则流--里面有用户的详细信息
         * 现在要将事件流和配置流进行关联,得出日志中用户的详细信息,如果(用户Id,详细信息,操作)
         * 那么我们可以将配置流/规则流--用户信息流 作为状态进行广播(因为配置流/规则流 -- 用户信息流较小)
         */
        public static void main(String[] args) {
            StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            DataStreamSource<Tuple4<String, String, String, Integer>> eventDs = env.addSource(new MySource());
            DataStreamSource<Map<String, Tuple2<String, Integer>>> userDs = env.addSource(new MysqlSource());
    
            // 定义描述器
            MapStateDescriptor<Void, Map<String, Tuple>> descriptor = new MapStateDescriptor<>("info", Types.VOID, Types.MAP(Types.STRING, Types.TUPLE(Types.STRING, Types.INT)));
            // 配置广播流
            BroadcastStream<Map<String, Tuple2<String, Integer>>> broadcastDs = userDs.broadcast(descriptor);
            // 将事件流与广播流进行连接
            BroadcastConnectedStream<Tuple4<String, String, String, Integer>, Map<String, Tuple2<String, Integer>>> connectDS = eventDs.connect(broadcastDs);
    
            connectDS.process(new BroadcastProcessFunction)
        }
        public static class MySource implements SourceFunction<Tuple4<String, String, String, Integer>> {
    
            private boolean isRunning = true;
    
            @Override
            public void run(SourceContext<Tuple4<String, String, String, Integer>> sourceContext) throws Exception {
                Random random = new Random();
                SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
    
                while (isRunning) {
                    int id = random.nextInt(4) + 1;
                    String userId = "user_" + id;
                    String eventTime = df.format(new Date());
                    String eventType = "type_" + random.nextInt(3);
                    int projectId = random.nextInt(4);
                    sourceContext.collect(Tuple4.of(userId,eventTime,eventType,projectId));
                    Thread.sleep(500);
                }
            }
    
            @Override
            public void cancel() {
                isRunning = false;
            }
        }
    
        public static class MysqlSource implements SourceFunction<Map<String,Tuple2<String,Integer>>>{
            private boolean isRunning = true;
            @Override
            public void run(SourceContext<Map<String, Tuple2<String, Integer>>> sourceContext) throws Exception {
                HashMap<String, Tuple2<String, Integer>> map = new HashMap<String, Tuple2<String, Integer>>();
                while (isRunning) {
                    map.put("user_1",Tuple2.of("张三",10));
                    map.put("user_2",Tuple2.of("李四",20));
                    map.put("user_3",Tuple2.of("王五",30));
                    map.put("user_4",Tuple2.of("赵六",40));
                }
                sourceContext.collect(map);
            }
    
            @Override
            public void cancel() {
                isRunning = false;
            }
        }
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
  • 相关阅读:
    c++之map使用踩坑
    C#——委托
    JVM面试题:(三)GC和垃圾回收算法
    关于如何设置好记且复杂度高的密码
    【词性的选择与所放位置练习题】but vs however
    4.3、注解实现AOP
    Day53——Web框架,Django框架基本使用
    AWS SAA C003 Test --EBS snapshot
    HZNUCTF -- web
    logback--基础--02--配置--configuration
  • 原文地址:https://blog.csdn.net/zhouhe_/article/details/127980680