• C++初阶(list容器+模拟实现)


    list介绍

    list的本质是一个带头的双向循环链表。

    链表是一种物理存储单元上非连续、非顺序的存储结构,数据元素的逻辑顺序是通过链表中的指针链接次序实现的。链表由一系列结点(链表中每一个元素称为结点)组成,结点可以在运行时动态生成。每个结点包括两个部分:一个是存储数据元素的数据域,另 一个是存储下一个结点地址的指针域。

    ​ 相较于vector的连续线性空间,list就显得负责许多,它的好处是每次插入或者删除一个元素,就只配置或者释放一个元素的空间。因此,list对于空间的运用有绝对的精准, 一点也不浪费。而且,对于任何位置的元素插入或元素的移除,list永远是常数时间。

    ​ List和vector是两个最常被使用的容器。 List容器是一个双向链表。

    • 采用动态存储分配,不会造成内存浪费和溢出
    • 链表执行插入和删除操作十分方便,修改指针即可,不需要移动大量元素
    • 链表灵活,但是空间和时间额外耗费较大
    • list有一个重要的性质,插入和删除操作都不会造成原有的list迭代器失效

    概述

    list容器

    • 数据结构:双向循环链表
    • 迭代器:双向迭代器
    • 常用API
      • 构造
      • 数据元素的插入和删除
      • 容器大小操作
      • 赋值操作
      • 数据的存取
      • 反转和排序
    • 动态存储分配(链表的插入和删除)
    • 注意:list容器不能使用常用的sort,只能使用自己的sort
    • list容器插入和删除很方便,但是不支持任意位置的随机访问

    list常见的接口

    list的构造函数

    list lstT;//list采用采用模板类实现,对象的默认构造形式 list(beg,end);//构造函数将[beg, end)区间中的元素拷贝给本身 list(n,elem);//构造函数将n个elem拷贝给本身 list(const list &lst);//拷贝构造函数
    void test() { list<int> lt1;// 无参构造 list<int> lt2(10, 5);// 用n个val构造一个list对象 list<int> lt3(lt2);// 拷贝构造 list<int> lt4(lt2.begin(), lt2.end());// 用一段区间的元素构造list }

    list中的迭代器

    • begin + end: 获取第一个数据位置的iterator/const_iterator, 获取最后一个数据的下一个位置的iterator/const_iterator(最后一个数据的下一个位置就是第一个数据的位置)
    • rbegin + rend: 获取最后一个数据位置的reverse_iterator,获取第一个数据前一个位置的reverse_iterator(第一个数据的前一个位置就是最后一个数据的位置)
    • list容器是一个双向的循环链表

    list的迭代器遍历

    1.迭代器遍历正向遍历

    void test01() { list lt; //尾插 lt.push_back(1); lt.push_back(2); lt.push_back(3); //头插 lt.push_front(0); lt.push_front(-1); lt.push_front(-2); list::iterator it = lt.begin(); while (it != lt.end()) { cout << *it << " "; ++it; } cout << endl; }

    2.范围for

    for (auto e : lt) { cout << e << " "; } cout << endl;

    3.迭代器反向遍历

    list<int>::reverse_iterator rit = lt.rbegin(); while (rit != lt.rend()) { cout << *rit << " "; ++rit; } cout << endl; }

    输出结果如下:

    list的增删改查

    assign(beg, end);//将[beg, end)区间中的数据拷贝赋值给本身 assign(n, elem);//将n个elem拷贝赋值给本身 push_back(elem);//在容器尾部加入一个元素 pop_back();//删除容器中最后一个元素 push_front(elem);//在容器开头插入一个元素 pop_front();//从容器开头移除第一个元素 insert(pos,elem);//在pos位置插elem元素的拷贝,返回新数据的位置 insert(pos,n,elem);//在pos位置插入n个elem数据,无返回值 insert(pos,beg,end);//在pos位置插入[beg,end)区间的数据,无返回值 clear();//移除容器的所有数据 erase(beg,end);//删除[beg,end)区间的数据,返回下一个数据的位置 erase(pos);//删除pos位置的数据,返回下一个数据的位置 remove(elem);//删除容器中所有与elem值匹配的元素 swap(lst);//将lst与本身的元素互换
    list mylist; mylist.push_back(19); mylist.push_back(29); mylist.push_back(39); mylist.push_back(49); mylist.push_back(59); mylist.push_front(100); mylist.push_front(200); mylist.push_front(300); mylist.push_front(400); vector v; v.push_back(1000); v.push_back(2000); v.push_back(3000); mylist.insert(mylist.begin(), v.begin(), v.end()); printList(mylist); mylist.remove(300); //删除大于300的数据 mylist.remove_if(myfunc);

    list的大小和头尾元素的读取

    size();//返回容器中元素的个数 empty();//判断容器是否为空 resize(num);//重新指定容器的长度为num,若容器变长,则以默认值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除 resize(num, elem);//重新指定容器的长度为num,若容器变长,则以值填充新位置。如果容器变短,则末尾超出容器长度的元素被删除

    list迭代器失效

    迭代器失效即迭代器所指向的节点的无效,即该节点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响。

    第一种情况:插入

    list mylist; mylist.push_back(19); mylist.push_back(29); mylist.push_back(39); mylist.push_back(49); mylist.push_back(59); list::iterator it = mylist.begin(); mylist.insert(it,3);

    运行结果没有问题,不会报错

    第二种情况:删除

    list mylist; mylist.push_back(19); mylist.push_back(29); mylist.push_back(39); mylist.push_back(49); mylist.push_back(59); list::iterator it = mylist.begin(); while( it! = mylist.end()) { mylist.erase(it); ++it; }

    总结:插入数据不会导致迭代器失效,删除数据会导致迭代器失效。相比vector容器,vector容器插入数据是会导致迭代器失效,因为vector涉及增容问题,而list却不存在增容问题,所以迭代器指向的位置是有效的。删除数据会导致迭代器指向的位置是无效的,所以迭代器会失效。

    解决方法:和vector一样,对迭代器进行赋值

    list<int> mylist; mylist.push_back(19); mylist.push_back(29); mylist.push_back(39); mylist.push_back(49); mylist.push_back(59); list<int>::iterator it = mylist.begin(); while( it! = mylist.end()) { it = mylist.erase(it);//erase()返回值是指向被删元素的下一元素的指针(也就是迭代器) }

    list模拟实现

    list整体框架

    list是由节点组成,所以定义一个节点的类,然后list的类中成员只需要一个头结点的指针即可。

    template<class T> struct __list_node { __list_node* _prev; __list_node* _next; T _data; __list_node(const T& x = T()) :_next(nullptr) , _prev(nullptr) , _data(x) {} }; template<class T> class list { typedef __list_node Node; public: private: Node* _head; };

    list的构造函数

    构造函数要做的任务就是开一个头结点,所以我们可以封装出一个具体的函数来实现创建头结点的这个过程

    创建头结点:

    void CreatHead() { _head = new Node; _head->_next = _head; _head->_prev = _head; }

    构造函数的实现:

    list() { CreatHead(); }

    list迭代器的实现

    list相比vector的迭代器而言,不再是一个简单的指针,它相对而言更复杂一些,list的迭代器为了实现一些简单的功能,我们把它封装成了一个类。看下面源码实现:

    我们自己来模拟实现一下简单的。
    迭代器的小框架(里面有一个成员变量——节点指针)

    struct __list_iterator { typedef __list_node Node; __list_iterator(Node* node = nullptr) :_node(node) {} Node* _node; }

    由于迭代器分普通迭代器和const 迭代器,为了不造成代码冗余,我们设计出来三个模板参数,根据传入的模板参数确定是那种迭代器。

    // __list_iterator -> 普通迭代器 // __list_iterator -> const迭代器 template<class T, class Ref, class Ptr> struct __list_iterator { typedef __list_node Node; typedef __list_iterator Self; Node* _node; __list_iterator(Node* node = nullptr) :_node(node) {} __list_iterator(const Self& l) :_node(l._node) {} // *it T& Ref operator*() { return _node->_data; } // it-> T* Ptr operator->() { return &_node->_data; } Self& operator++() { _node = _node->_next; return *this; } Self& operator--() { _node = _node->_prev; return *this; } Self operator++(int) { Self tmp(*this); //_node = _node->_next; ++(*this); return tmp; } Self operator--(int) { Self tmp(*this); //_node = _node->_prev; --(*this); return tmp; } Self operator+(int count) { Self tmp(*this); while (count--) { ++tmp; } return tmp; } Self operator-(int count) { Self tmp(*this); while (count--) { --tmp; } return tmp; } bool operator!=(const Self& it) { return _node != it._node; } };

    我们还要在list里面做这样一个操作(堆两种迭代器进行重命名,方便我们认识):

    typedef list_iterator iterator;// 普通迭代器 typedef list_iteratorconst T&, const T*> const_iterator;// const迭代器

    list内部begin()和end()的实现(普通迭代器调用前两个,const迭代器调用后两个)

    iterator begin() { return iterator(_head->_next); } iterator end() { return iterator(_head); } const_iterator begin() const { return const_iterator(_head->_next); } const_iterator end() const { return const_iterator(_head); }

    list的增删查改的实现

    void push_back(const T& x) { Node* newnode = new Node(x); Node* tail = _head->_prev; tail->_next = newnode; newnode->_prev = tail; newnode->_next = _head; _head->_prev = newnode; } void pop_back() { assert(head != head->_next); Node* tail = head->_prev; Node* prevTail = tail->_prev; delete tail; tail = prevTail; tail->_next = head; head->_prev = tail; } void push_front(const T& x) { Node* newnode = new Node(x); Node* firstNode = head->_next; head->_next = newnode; newnode->_prev = head; newnode->_next = firstNode; firstNode->_prev = newnode; } void pop_front() { assert(head->_next != head); Node* firstNode = head->_next; Node* secondNode = firstNode->_next; delete firstNode; firstNode = nullptr; head->_next = secondNode; secondNode->_prev = head; } void insert(iterator pos, const T& x) { Node* cur = pos._node; Node* prev = cur->_prev; Node* newnode = new Node(x); prev->_next = newnode; newnode->_prev = prev; newnode->_next = cur; cur->_prev = newnode; } iterator erase(iterator pos) { assert(head->_next != head); assert(pos != end()); Node* node = pos._node; Node* prev = node->_prev; Node* next = node->_next; delete node; node = nullptr; prev->_next = next; next->_prev = prev; return iterator(next); } T front() { assert(head->_next != head); return head->_next->data; } T back() { assert(head->_next != head); return head->_prev->data; }

    list中的析构函数和clear

    1.clear 通过迭代器遍历,一个一个的删除节点

    void clear() { iterator it = begin(); while (it != end()) { it = erase(it); } }

    2.析构函数 可以先调用clear函数清理空间,然后再delete掉头结点

    ~list() { clear(); delete head; head = nullptr; }

    拷贝构造和operator=赋值重载

    1.拷贝构造

    list(const list& lt) { CreatHead(); /*const_iterator it = lt.begin(); while (it != lt.end()) { push_back(*it); ++it; }*/ for (auto e : lt) push_back(e); }

    2.operator= 直接利用swap和形参交换,形参会自己调用析构函数清理空间

    list& operator=(list lt) { if (this != <)// 防止自己给自己赋值 { swap(lt); } return *this; }

    swap函数实现如下:

    void swap(list& lt) { ::swap(head, lt.head); }
  • 相关阅读:
    区块链原理及Fabric学习笔记
    AOP实现注解式脱敏数据明文查询
    支付宝支付接口的调用
    WorkPlus私有化部署的即时通讯软件,企业内部沟通协作的利器
    重要公告|投票委托已经上线,应该如何选择社区代表?
    百度春招C++后端面经总结
    上传到服务器的图片资源如何读取
    基于JavaSwing开发模拟电梯系统+分析报告 课程设计 大作业源码
    uni-app复制功能
    Sass系统学习
  • 原文地址:https://www.cnblogs.com/yzsn12138/p/16913416.html