设
X
1
,
X
2
,
⋯
,
X
n
是取自总体正态
X
∼
N
(
μ
,
σ
2
)
的样本
X
‾
=
1
n
∑
i
=
1
n
X
i
S
2
=
1
n
−
1
∑
i
=
1
n
(
X
i
−
X
‾
)
2
为样本方差
设X_1,X_2,\cdots,X_n是取自总体正态X\sim{N(\mu,\sigma^2)}的样本 \\\overline{X}=\frac{1}{n}\sum\limits_{i=1}^{n}X_i \\S^2=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2为样本方差
设X1,X2,⋯,Xn是取自总体正态X∼N(μ,σ2)的样本X=n1i=1∑nXiS2=n−11i=1∑n(Xi−X)2为样本方差
性质
样本均值
X
‾
∼
N
(
μ
,
σ
2
n
)
\overline{X}\sim{N(\mu,\frac{\sigma^2}{n})}
X∼N(μ,nσ2)
可以有独立正态分布可加性和随机变量线性函数的规律得到
标准化:
x
‾
∗
=
X
‾
−
μ
σ
/
n
∼
N
(
0
,
1
)
\overline{x}^*=\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim{N(0,1)}
x∗=σ/nX−μ∼N(0,1)
一个正态总体的抽样分布
χ
2
分布
\chi^2分布
χ2分布
cases1:
χ
2
=
∑
i
=
1
n
(
1
σ
(
X
i
−
μ
)
)
2
=
1
σ
2
∑
i
=
1
n
(
X
i
−
μ
)
2
∼
χ
2
(
n
)
\chi^2=\sum_{i=1}^{n}(\frac{1}{\sigma} (X_i-\mu))^2=\frac{1}{\sigma^2}\sum_{i=1}^{n}(X_i-\mu)^2 \sim{\chi^2(n)}
χ2=i=1∑n(σ1(Xi−μ))2=σ21i=1∑n(Xi−μ)2∼χ2(n)
X
∼
N
(
μ
,
σ
2
)
X
i
∼
N
(
μ
,
σ
2
)
Z
=
X
i
−
μ
∼
N
(
0
,
σ
2
)
,
(
a
=
1
,
b
=
−
μ
)
1
σ
(
X
i
−
μ
)
=
1
σ
Z
∼
N
(
0
,
1
)
,
(
a
=
1
σ
,
b
=
0
)
得证
X\sim{N(\mu,\sigma^2)} \\ X_i\sim{N(\mu,\sigma^2)} \\ Z=X_i-\mu\sim{N(0,\sigma^2)},(a=1,b=-\mu) \\ \frac{1}{\sigma} (X_i-\mu)=\frac{1}{\sigma}Z\sim{N(0,1)},(a=\frac{1}{\sigma},b=0) \\\\ 得证
X∼N(μ,σ2)Xi∼N(μ,σ2)Z=Xi−μ∼N(0,σ2),(a=1,b=−μ)σ1(Xi−μ)=σ1Z∼N(0,1),(a=σ1,b=0)得证
cases2:
X
‾
和
S
2
相互独立
\overline{X}和S^2相互独立
X和S2相互独立
ξ
=
(
n
−
1
)
σ
2
S
2
∼
χ
2
(
n
−
1
)
\xi=\frac{(n-1)}{\sigma^2}S^2 \sim{\chi^2(n-1)}
ξ=σ2(n−1)S2∼χ2(n−1)
S
2
=
1
n
−
1
∑
i
=
1
n
(
X
i
−
X
‾
)
2
S
2
(
n
−
1
)
=
∑
i
=
1
n
(
X
i
−
X
‾
)
2
S
2
(
n
−
1
)
1
σ
2
=
1
σ
2
∑
i
=
1
n
(
X
i
−
X
‾
)
2
记
ζ
=
∑
i
=
1
n
(
X
i
−
X
‾
)
2
ζ
是
n
个随机变量
(
X
)
A
=
∑
i
=
1
n
X
i
X
‾
=
1
n
A
并且存在约束
:
∑
i
=
1
n
(
X
i
−
X
‾
)
=
0
(
∑
i
=
1
n
X
i
−
∑
i
=
1
n
(
X
‾
)
=
∑
i
=
1
n
X
i
−
n
(
X
‾
)
=
A
−
A
=
0
)
S^2=\frac{1}{n-1}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 \\S^2(n-1)=\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 \\S^2(n-1)\frac{1}{\sigma^2}=\frac{1}{\sigma^2}\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 \\记\zeta=\sum\limits_{i=1}^{n}(X_i-\overline{X})^2 \\\zeta是n个随机变量(X) \\A=\sum\limits_{i=1}^{n}X_i \\\overline{X}=\frac{1}{n}A \\并且存在约束:\sum\limits_{i=1}^{n}(X_i-\overline{X})=0 \\ (\sum\limits_{i=1}^{n}X_i-\sum\limits_{i=1}^{n}(\overline{X}) =\sum\limits_{i=1}^{n}X_i-n(\overline{X}) =A-A=0)
S2=n−11i=1∑n(Xi−X)2S2(n−1)=i=1∑n(Xi−X)2S2(n−1)σ21=σ21i=1∑n(Xi−X)2记ζ=i=1∑n(Xi−X)2ζ是n个随机变量(X)A=i=1∑nXiX=n1A并且存在约束:i=1∑n(Xi−X)=0(i=1∑nXi−i=1∑n(X)=i=1∑nXi−n(X)=A−A=0)
η
=
X
‾
∗
ξ
/
n
−
1
=
X
‾
−
μ
S
/
n
∼
t
(
n
−
1
)
\eta=\frac{\overline{X}^*}{\sqrt{\xi}/\sqrt{n-1}} =\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim{t(n-1)}
η=ξ/n−1X∗=S/nX−μ∼t(n−1)
t
=
X
Y
/
n
;
X
∼
N
(
0
,
1
)
;
Y
∼
t
(
n
)
t
=
X
Y
/
(
n
−
1
)
;
X
∼
N
(
0
,
1
)
;
Y
∼
t
(
n
−
1
)
t
=
X
‾
∗
ξ
/
(
n
−
1
)
;
x
‾
∗
=
X
‾
−
μ
σ
/
n
∼
N
(
0
,
1
)
ξ
=
(
n
−
1
)
σ
2
S
2
∼
t
(
n
−
1
)
t
=
X
‾
−
μ
σ
/
n
(
(
n
−
1
)
σ
2
S
2
)
/
(
n
−
1
)
=
X
‾
−
μ
S
σ
σ
/
n
t
=
X
‾
−
μ
S
/
n
∼
t
(
n
−
1
)
\\t=\frac{X}{\sqrt{Y/n}};X\sim{N(0,1)};Y\sim{t(n)} \\t=\frac{X}{\sqrt{Y/(n-1)}};X\sim{N(0,1)};Y\sim{t(n-1)} \\ \\t=\frac{\overline{X}^*}{\sqrt{\xi/{(n-1)}}}; \\ \overline{x}^*=\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim{N(0,1)} \\\xi=\frac{(n-1)}{\sigma^2}S^2\sim{t(n-1)} \\t=\frac{\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}} {\sqrt{(\frac{(n-1)}{\sigma^2}S^2)/(n-1)}} =\frac{\overline{X}-\mu}{ \frac{S}{\sigma}\sigma/\sqrt{n} } \\ t=\frac{\overline{X}-\mu}{S/\sqrt{n}}\sim{t(n-1)}
t=Y/nX;X∼N(0,1);Y∼t(n)t=Y/(n−1)X;X∼N(0,1);Y∼t(n−1)t=ξ/(n−1)X∗;x∗=σ/nX−μ∼N(0,1)ξ=σ2(n−1)S2∼t(n−1)t=(σ2(n−1)S2)/(n−1)σ/nX−μ=σSσ/nX−μt=S/nX−μ∼t(n−1)
两个正态总体的抽样分布
F分布
S
1
=
(
X
1
,
X
2
,
⋯
,
X
n
1
)
S
2
=
(
Y
1
,
Y
2
,
⋯
,
Y
n
2
)
S
i
是总体
X
∼
N
(
μ
i
,
σ
i
2
)
的样本
(
i
=
1
,
2
)
S
1
与
S
2
相互独立
\mathscr{S_1}=(X_1,X_2,\cdots,X_{n_1}) \\ \mathscr{S_2}=(Y_1,Y_2,\cdots,Y_{n_2}) \\ \mathscr{S_i}是总体X\sim{N(\mu_i,\sigma_i^2)}的样本(i=1,2) \\\mathscr{S_1}与\mathscr{S_2}相互独立
S1=(X1,X2,⋯,Xn1)S2=(Y1,Y2,⋯,Yn2)Si是总体X∼N(μi,σi2)的样本(i=1,2)S1与S2相互独立
X
‾
=
1
n
1
∑
i
=
1
n
1
X
i
Y
‾
=
1
n
2
∑
i
=
1
n
2
X
i
S
1
2
=
1
n
1
−
1
∑
i
=
1
n
1
(
X
i
−
X
‾
)
2
S
2
2
=
1
n
2
−
1
∑
i
=
1
n
2
(
X
i
−
X
‾
)
2
\overline{X}=\frac{1}{n_1}\sum\limits_{i=1}^{n_1}X_i \\ \overline{Y}=\frac{1}{n_2}\sum\limits_{i=1}^{n_2}X_i \\ S_1^2=\frac{1}{n_1-1}\sum\limits_{i=1}^{n_1}(X_i-\overline{X})^2 \\ S_2^2=\frac{1}{n_2-1}\sum\limits_{i=1}^{n_2}(X_i-\overline{X})^2
X=n11i=1∑n1XiY=n21i=1∑n2XiS12=n1−11i=1∑n1(Xi−X)2S22=n2−11i=1∑n2(Xi−X)2
F
=
S
1
2
/
S
2
2
σ
1
2
/
σ
2
2
=
S
1
2
/
σ
1
2
S
2
2
/
σ
2
2
∼
F
(
n
1
−
1
,
n
2
−
1
)
F=\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} =\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim{F(n_1-1,n_2-1)}
F=σ12/σ22S12/S22=S22/σ22S12/σ12∼F(n1−1,n2−1)
推导:
F
=
X
/
n
1
Y
/
n
2
∼
F
(
n
1
,
n
2
)
;
X
∼
χ
2
(
n
1
)
;
Y
∼
χ
2
(
n
2
)
根据
F
分布的定义
:
对于
ξ
i
=
(
n
i
−
1
)
σ
i
2
S
i
2
∼
χ
2
(
n
i
−
1
)
则
:
ξ
1
/
(
n
1
−
1
)
ξ
2
/
(
n
2
−
1
)
∼
F
(
(
n
1
−
1
)
,
(
n
2
−
1
)
)
F
=
S
1
2
/
S
2
2
σ
1
2
/
σ
2
2
=
ξ
1
/
(
n
1
−
1
)
ξ
2
/
(
n
2
−
1
)
从而证得
:
上述结论
F=\frac{X/n_1}{Y/n_2}\sim{F(n_1,n_2)}; \\X\sim{\chi^2(n_1)};Y\sim{\chi^2(n_2)} \\\\ 根据F分布的定义:对于 \\ \xi_i=\frac{(n_i-1)}{\sigma_i^2}S_i^2 \sim{\chi^2(n_i-1)} \\则: \\ \frac{\xi_1/(n_1-1)}{\xi_2/(n_2-1)} \sim{F((n_1-1),(n_2-1))} \\F=\frac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2} =\frac{\xi_1/(n_1-1)}{\xi_2/(n_2-1)} \\从而证得:上述结论
F=Y/n2X/n1∼F(n1,n2);X∼χ2(n1);Y∼χ2(n2)根据F分布的定义:对于ξi=σi2(ni−1)Si2∼χ2(ni−1)则:ξ2/(n2−1)ξ1/(n1−1)∼F((n1−1),(n2−1))F=σ12/σ22S12/S22=ξ2/(n2−1)ξ1/(n1−1)从而证得:上述结论
σ
1
=
σ
2
\sigma_1=\sigma_2
σ1=σ2的t分布
T
=
X
‾
−
Y
‾
−
(
μ
1
−
μ
2
)
S
w
n
1
+
n
2
n
1
n
2
∼
t
(
n
1
+
n
2
−
2
)
S
w
2
=
(
n
1
−
1
)
S
1
2
+
(
n
2
−
1
)
S
2
2
n
1
+
n
2
−
2
T=\frac{\overline{X}-\overline{Y}-(\mu_1-\mu_2)} {S_{w}\sqrt{\frac{n_1+n_2}{n_1n_2}}} \sim{t(n_1+n_2-2)} \\ S_w^2=\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}
T=Swn1n2n1+n2X−Y−(μ1−μ2)∼t(n1+n2−2)Sw2=n1+n2−2(n1−1)S12+(n2−1)S22