• 如何判断函数极值点与拐点


    一、极值点

    • 极值的必要条件:f(a)=0" role="presentation">f(a)=0
    • 极值的第一充分条件:f(a)=0" role="presentation" style="position: relative;">f(a)=0f(x)" role="presentation" style="position: relative;">f(x)x=a" role="presentation" style="position: relative;">x=a两侧变号
    • 极值的第二充分条件:f(a)=0" role="presentation" style="position: relative;">f(a)=0f(a)0" role="presentation" style="position: relative;">f(a)0(f(a)>0" role="presentation" style="position: relative;">f(a)>0为极小值,f(a)<0" role="presentation" style="position: relative;">f(a)<0为极大值)
    • 极值的第三充分条件:设f(x)" role="presentation" style="position: relative;">f(x)x=a" role="presentation" style="position: relative;">x=a处最低阶不为零的导数的阶为n" role="presentation" style="position: relative;">n,若n" role="presentation" style="position: relative;">n为偶数x=a" role="presentation" style="position: relative;">x=a是极值点。若n" role="presentation" style="position: relative;">n为奇数x=a" role="presentation" style="position: relative;">x=a是不是极值点

    二、拐点

    函数的拐点可理解为导数的极值点,因此上述关于极值点的结论都可“稍加改变”后用于判断拐点,下面是一些常用结论:

    • 拐点的必要条件:f(a)=0" role="presentation" style="position: relative;">f(a)=0
    • 拐点的充分条件:f(a)=0" role="presentation" style="position: relative;">f(a)=0f(x)" role="presentation" style="position: relative;">f(x)x=a" role="presentation" style="position: relative;">x=a左右两侧变号
    • 利用三阶导数的判别法:f(a)=f(a)=0" role="presentation" style="position: relative;">f(a)=f(a)=0f(a)0" role="presentation" style="position: relative;">f(a)0

    三、情形分析

    情形一:

    • x=a" role="presentation" style="position: relative;">x=a既不是f(x)" role="presentation" style="position: relative;">f(x)的极值点也不是拐点。例如一次函数f(x)=2x" role="presentation" style="position: relative;">f(x)=2x,有f(0)=2" role="presentation" style="position: relative;">f(0)=2f(0)=0" role="presentation" style="position: relative;">f(0)=0,但显然x=0" role="presentation" style="position: relative;">x=0既不是f(x)" role="presentation" style="position: relative;">f(x)的极值点也不是拐点
    • x=a" role="presentation" style="position: relative;">x=af(x)" role="presentation" style="position: relative;">f(x)的拐点,例如f(x)=x3+x" role="presentation" style="position: relative;">f(x)=x3+x,由于f(0)=1" role="presentation" style="position: relative;">f(0)=1f(0)=0" role="presentation" style="position: relative;">f(0)=0f(0)=6" role="presentation" style="position: relative;">f(0)=6,故x=0" role="presentation" style="position: relative;">x=0f(x)" role="presentation" style="position: relative;">f(x)的拐点

    情形二:

    • x=a" role="presentation" style="position: relative;">x=af(x)" role="presentation" style="position: relative;">f(x)的极值点,例如f(x)=x2" role="presentation" style="position: relative;">f(x)=x2,满足f(0)=0" role="presentation" style="position: relative;">f(0)=0f(0)=2" role="presentation" style="position: relative;">f(0)=2,显然x=0" role="presentation" style="position: relative;">x=0f(x)" role="presentation" style="position: relative;">f(x)的极(小)值点

    情形三:

    • x=a" role="presentation" style="position: relative;">x=af(x)" role="presentation" style="position: relative;">f(x)的极值点。例如f(x)=x4" role="presentation" style="position: relative;">f(x)=x4满足f(0)=f(0)=0" role="presentation" style="position: relative;">f(0)=f(0)=0,显然x=0" role="presentation" style="position: relative;">x=0f(x)" role="presentation" style="position: relative;">f(x)的极小值点
    • x=a" role="presentation" style="position: relative;">x=af(x)" role="presentation" style="position: relative;">f(x)的拐点。例如f(x)=x3" role="presentation" style="position: relative;">f(x)=x3,满足f(0)=f(0)=0" role="presentation" style="position: relative;">f(0)=f(0)=0,显然x=0" role="presentation" style="position: relative;">x=0f(x)" role="presentation" style="position: relative;">f(x)的拐点
    • x=a" role="presentation" style="position: relative;">x=a既不是f(x)" role="presentation" style="position: relative;">f(x)的极值点也不是拐点。例如f(x)=C" role="presentation" style="position: relative;">f(x)=C(常值函数),显然任意点处一、二阶导数都等于0,但f(x)" role="presentation" style="position: relative;">f(x)既无极值点也无拐点

    情形四:

    • 这是平凡的情形,显然x=a" role="presentation" style="position: relative;">x=a既不是f(x)" role="presentation" style="position: relative;">f(x)的极值点也不是拐点。

  • 相关阅读:
    PostgreSQL解决死锁
    Java 在Word文档中添加艺术字
    SpringBoot+Vue+Element-UI实现家具商城系统
    黄金眼PAAS化数据服务DIFF测试工具的建设实践 | 京东云技术团队
    Java版工程行业管理系统源码-专业的工程管理软件- 工程项目各模块及其功能点清单
    LeetCode 1251. 平均售价
    面试复习题-- JUC
    软件系统与熵增
    Win7系统explorer占用cpu过高怎么解决
    Android 10.0 Launcher3定制化之folder文件夹文件居中显示的功能实现
  • 原文地址:https://blog.csdn.net/weixin_36670529/article/details/97011627