前置知识:
证明见 “XXDS008-行列式的性质”。
性质 设
D
=
∣
a
11
⋯
a
1
k
⋮
⋮
0
a
k
1
⋯
a
k
k
c
11
⋯
c
1
k
b
11
⋯
b
1
n
⋮
⋮
⋮
⋮
c
n
1
⋯
c
n
k
b
n
1
⋯
b
n
n
∣
D = |a11⋯a1k⋮⋮0ak1⋯akkc11⋯c1kb11⋯b1n⋮⋮⋮⋮cn1⋯cnkbn1⋯bnn|
D=
a11⋮ak1c11⋮cn1⋯⋯⋯⋯a1k⋮akkc1k⋮cnkb11⋮bn10⋯⋯b1n⋮bnn
D 1 = d e t ( a i j ) = ∣ a 11 ⋯ a 1 k ⋮ ⋮ a k 1 ⋯ a k k ∣ , D 2 = d e t ( b i j ) = ∣ b 11 ⋯ b 1 k ⋮ ⋮ b k 1 ⋯ b k k ∣ D_1 = det(a_{ij}) = |a11⋯a1k⋮⋮ak1⋯akk|, \hspace{1em} D_2 = det(b_{ij}) = |b11⋯b1k⋮⋮bk1⋯bkk| D1=det(aij)= a11⋮ak1⋯⋯a1k⋮akk ,D2=det(bij)= b11⋮bk1⋯⋯b1k⋮bkk
满足 D = D 1 D 2 D = D_1 D_2 D=D1D2。
证明 通过对 D 1 D_1 D1 作运算 r i + λ r j r_i + \lambda r_j ri+λrj,将 D 1 D_1 D1 化为下三角形行列式,设为
D 1 = ∣ p 11 0 ⋮ ⋱ p n 1 ⋯ p n n ∣ = p 11 ⋯ p n n D_1 = |p110⋮⋱pn1⋯pnn| = p_{11} \cdots p_{nn} D1= p11⋮pn1⋱⋯0pnn =p11⋯pnn
通过对 D 2 D_2 D2 作运算 c i + λ c j c_i + \lambda c_j ci+λcj,将 D 2 D_2 D2 化为下三角形行列式,设为
D 2 = ∣ q 11 0 ⋮ ⋱ q n 1 ⋯ q n n ∣ = q 11 ⋯ q n n D_2 = |q110⋮⋱qn1⋯qnn| = q_{11} \cdots q_{nn} D2= q11⋮qn1⋱⋯0qnn =q11⋯qnn
通过对 D D D 的前 k k k 列作运算 r i + λ r j r_i + \lambda r_j ri+λrj,再对后 n n n 列作运算 c i + λ c j c_i + \lambda c_j ci+λcj,把 D D D 化为下三角形行列式
D = ∣ p 11 ⋮ ⋱ 0 p k 1 ⋯ p k k c 11 ⋯ c 1 k q 11 ⋮ ⋮ ⋮ ⋱ c n 1 ⋯ c n k q n 1 ⋯ q n n ∣ D = |p11⋮⋱0pk1⋯pkkc11⋯c1kq11⋮⋮⋮⋱cn1⋯cnkqn1⋯qnn| D= p11⋮pk1c11⋮cn1⋱⋯⋯⋯pkkc1k⋮cnkq11⋮qn10⋱⋯qnn
于是有
D = p 11 ⋯ p k k q 11 ⋯ q n n D = p_{11} \cdots p_{kk} q_{11} \cdots q_{nn} D=p11⋯pkkq11⋯qnn