• CF1479D Odd Mineral Resource


    CF1479D Odd Mineral Resource

    CF1000F 上树,考虑树上莫队

    同理,对值域分块,记 s u m i sum_i sumi 表示第 i i i 块值域出现次数为奇数的数的个数,再开个桶记录一下每个数的出现次数就行了,单次修改 O ( 1 ) \mathcal O(1) O(1)

    对于询问,同块暴力,否则从左散块,中整块,右散块判断,找到就结束,单次询问 O ( n ) \mathcal O(\sqrt n) O(n )

    说下树上莫队的细节:

    • 建括号序,有两种情况,有一种需特判 LCA(树剖维护)。
    • 注意一些加加减减的细节问题,本人模拟赛因为这爆零。

    综上,时间复杂度 O ( n n ) \mathcal O(n\sqrt n) O(nn ),空间复杂度 O ( n ) \mathcal O(n) O(n) n n n 与值域同阶。

    #include 
    
    using namespace std;
    
    #define he putchar('\n')
    #define ha putchar(' ')
    
    typedef long long ll;
    
    inline int read() {
    	int x = 0;
    	char c = getchar();
    	while (c < '0' || c > '9')
    		c = getchar();
    	while (c >= '0' && c <= '9')
    		x = (x << 3) + (x << 1) + (c ^ 48), c = getchar();
    	return x;
    }
    
    inline void write(int x) {
    	if (x < 0) {
    		x = -x;
    		putchar('-');
    	}
    	if (x > 9) write(x / 10);
    	putchar(x % 10 + 48);
    }
    
    const int _ = 7e5 + 10;
    
    int n, m, cnt, a[_], L[_], R[_], fn[_], ans[_];
    
    int sq, bel[_];
    
    vector<int> d[_];
    
    void dfs(int u, int fa) {
    	fn[++cnt] = u, L[u] = cnt;
    	for (int v : d[u]) {
    		if (v == fa) continue;
    		dfs(v, u);
    	}
    	fn[++cnt] = u, R[u] = cnt;
    }
    
    int siz[_], dep[_], fa[_], hson[_], top[_];
    
    void dfs1(int u, int D = 1) {
    	siz[u] = 1, dep[u] = D;
    	for (int v : d[u])
    		if (!siz[v]) {
    		fa[v] = u;
    		dfs1(v, D + 1);
    		siz[u] += siz[v];
    		if (siz[hson[u]] < siz[v]) hson[u] = v;
    	}
    }
    
    void dfs2(int u, int tf) {
    	top[u] = tf;
    	if (hson[u]) dfs2(hson[u], tf);
    	for (int v : d[u])
    		if (!top[v]) dfs2(v, v);
    }
    
    int LCA(int u, int v) {
    	while (top[u] != top[v]) {
    		if (dep[top[u]] < dep[top[v]]) swap(u, v);
    		u = fa[top[u]];
    	}
    	return dep[u] > dep[v] ? v : u;
    }
    
    struct Query {
    	int l, r, L, R, id, dd;
    } q[_];
    
    bool cmp(Query x, Query y) {
    	if (bel[x.L] != bel[y.L]) return x.L < y.L;
    	if (bel[x.L] & 1) return x.R < y.R;
    	return x.R > y.R;
    }
    
    int t[_], sum[_], lp[_], rp[_];
    
    void upd(int x) {
    	if (t[x] & 1) sum[bel[x]]--;
    	else sum[bel[x]]++;
    	t[x] ^= 1;
    }
    
    signed main() {
    	n = read(), m = read();
    	for (int i = 1; i <= n; ++i) a[i] = read();
    	for (int i = 1; i < n; ++i) {
    		int x = read(), y = read();
    		d[x].push_back(y), d[y].push_back(x);
    	}
    	dfs(1, 0);
    	dfs1(1), dfs2(1, 1);
    	sq = sqrt(cnt) * 1.2;
    	for (int i = 1; i <= cnt; ++i) bel[i] = (i - 1) / sq + 1;
    	for (int i = 1; i <= bel[cnt]; ++i) lp[i] = rp[i - 1] + 1, rp[i] = min(cnt, i * sq);
    	for (int i = 1, u, v; i <= m; ++i) {
    		u = read(), v = read();
    		q[i].l = read(), q[i].r = read(), q[i].id = i;
    		if (L[u] > L[v]) swap(u, v);
    		if (R[u] < L[v]) q[i].L = R[u], q[i].R = L[v], q[i].dd = LCA(u, v);
    		else q[i].L = L[u], q[i].R = L[v];
    	}
    	sort(q + 1, q + m + 1, cmp);
    	int l = 0, r = 0;
    	for (int i = 1; i <= m; ++i) {
    		while (l > q[i].L) upd(a[fn[--l]]);
    		while (r < q[i].R) upd(a[fn[++r]]);
    		while (l < q[i].L) upd(a[fn[l++]]);
    		while (r > q[i].R) upd(a[fn[r--]]);
    		upd(a[fn[L[q[i].dd]]]);
    		bool flg = 0;
    		if (bel[q[i].l] == bel[q[i].r]) {
    			for (int j = q[i].l; j <= q[i].r; ++j)
    				if (t[j] & 1) {ans[q[i].id] = j, flg = 1;break;}
    		} else {
    			if (!flg) for (int j = q[i].l; j <= rp[bel[q[i].l]]; ++j) if (t[j] & 1) {ans[q[i].id] = j;flg = 1;break;}
    			if (!flg) for (int j = bel[q[i].l] + 1; j <= bel[q[i].r] - 1; ++j) if (sum[j]) {
    				for (int k = lp[j]; k <= rp[j]; ++k) if (t[k] & 1) {ans[q[i].id] = k;flg = 1;break;}
    				if (flg) break;
    			}
    			if (!flg) for (int j = lp[bel[q[i].r]]; j <= q[i].r; ++j) if (t[j] & 1) {ans[q[i].id] = j;flg = 1;break;}
    		}
    		if (!flg) ans[q[i].id] = -1;
    		upd(a[fn[L[q[i].dd]]]);
    	}
    	for (int i = 1; i <= m; ++i) write(ans[i]), he;
    	return 0;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
  • 相关阅读:
    将 Llama2 中文模型接入 FastGPT,再将 FastGPT 接入任意 GPT 套壳应用,真刺激!
    Web前端:前端vs后端vs全栈开发人员——有什么区别?
    java解析、导出excel
    【AD9361】设置带宽
    vue2 vue3 中指令总结
    Python 如何使用 MySQL 8.2 读写分离?
    Apache Doris 巨大飞跃:存算分离新架构
    JS中应该注意的点
    RabbitMQ常见命令总结
    参考意义大。4+巨噬细胞相关生信思路,简单易复现。
  • 原文地址:https://blog.csdn.net/qq_46258139/article/details/126794609