一般来说,高阶导数的计算和导数一样,可以按照定义逐步求出。同时,高阶导数也有求导法则:
d n d x n ( u ± v ) = d n d x n u ± d n d x n v \frac{{\rm{d}}^n}{{\rm{d}}x^n}(u\pm v)=\frac{{\rm{d}}^n}{{\rm{d}}x^n}u\pm \frac{{\rm{d}}^n}{{\rm{d}}x^n}v dxndn(u±v)=dxndnu±dxndnv
d n d x n ( C u ) = C d n d x n u \frac{{\rm{d}}^n}{{\rm{d}}x^n} (Cu)=C\frac{{\rm{d}}^n}{{\rm{d}}x^n}u dxndn(Cu)=Cdxndnu
d n d x n ( u ⋅ v ) = ∑ k = 0 n C k n d n − k d x n − k u d k d x k v \frac{{\rm{d}}^n}{{\rm{d}}x^n}(u\cdot v)=\sum_{k=0}^n C_k^n\frac{{\rm{d}}^{n-k}}{{\rm{d}}x^{n-k}}u\frac{{\rm{d}}^k}{{\rm{d}}x^k}v dxndn(u⋅v)=∑k=0nCkndxn−kdn−kudxkdkv(莱布尼兹公式)
根据复合函数求导法则,有 ( f ( a x + b ) ) ( n ) (f(ax+b))^{(n)} (f(ax+b))(n)= a n f ( n ) ( a x + b ) {a^{n}}f^{(n)}(ax+b) anf(n)(ax+b)
这就是说,如果求得 f ( n ) ( x ) f^{(n)}(x) f(n)(x),则可以直接得到 ( f ( a x + b ) ) ( n ) (f(ax+b))^{(n)} (f(ax+b))(n)= a n f ( n ) ( a x + b ) {a^{n}}f^{(n)}(ax+b) anf(n)(ax+b)
(1)| n n n | ( f ( a x + b ) ) ( n ) (f(ax+b))^{(n)} (f(ax+b))(n) |
|---|---|
| 0 | f ( a x + b ) f(ax+b) f(ax+b) |
| 1 1 1 | f ′ ( a x + b ) ⋅ a f'(ax+b)\cdot{a} f′(ax+b)⋅a |
| 2 2 2 | f ′ ′ ( a x + b ) ⋅ a 2 f''(ax+b)\cdot{a^2} f′′(ax+b)⋅a2 |
| ⋯ \cdots ⋯ | ⋯ \cdots ⋯ |
| n n n | f ( n ) ( a x + b ) ⋅ a n f^{(n)}(ax+b)\cdot{a^{n}} f(n)(ax+b)⋅an= a n f ( n ) ( a x + b ) {a^{n}}f^{(n)}(ax+b) anf(n)(ax+b) |
| n n n | ( a x ) ( n ) (a^{x})^{(n)} (ax)(n) |
|---|---|
| 1 | a x ln a a^{x}\ln{a} axlna |
| 2 | a x ln 2 a a^{x}\ln^{2}{a} axln2a |
| 3 | a x ln 3 a a^{x}\ln^{3}{a} axln3a |
| ⋯ \cdots ⋯ | ⋯ \cdots ⋯ |
| n | a x ln n a a^{x}\ln^{n}{a} axlnna |
由公式(1), ( a k x ) ( n ) (a^{kx})^{(n)} (akx)(n)= k n a k x ln n a k^{n}a^{kx}\ln^{n}{a} knakxlnna
当 a = e a=e a=e时, ( e x ) ( n ) (e^{x})^{(n)} (ex)(n)= e x e^{x} ex; ( e k x ) ( n ) (e^{kx})^{(n)} (ekx)(n)= k n e k x k^{n}e^{kx} knekx
(0)| n n n | f ( n ) ( x ) f^{(n)}(x) f(n)(x) | f n ( x ) f^{n}(x) fn(x)统一为 sin ( x + n π 2 ) \sin(x+n\frac{\pi}{2}) sin(x+n2π)形式 |
|---|---|---|
| 1 | cos x \cos x cosx | sin ( x + π 2 ) \sin{(x+\frac{\pi}{2})} sin(x+2π) |
| 2 | − sin x -\sin x −sinx | sin ( x + 2 ⋅ π 2 ) \sin{(x+2\cdot\frac{\pi}{2})} sin(x+2⋅2π) |
| 3 | − cos x -\cos x −cosx | sin ( x + 3 ⋅ π 2 ) \sin(x+3\cdot\frac{\pi}{2}) sin(x+3⋅2π) |
| 4 | sin x \sin x sinx | sin ( x + 4 ⋅ π 2 ) \sin(x+4\cdot\frac{\pi}{2}) sin(x+4⋅2π) |
| … | … | ⋯ \cdots ⋯ |
| n n n | sin ( x + n ⋅ π 2 ) \sin(x+n\cdot\frac{\pi}{2}) sin(x+n⋅2π) |
(1)(1-1)求 cos x \cos{x} cosx的高阶导数时
两边同时求导, ( cos x ) ′ ′ (\cos{x})'' (cosx)′′= cos ( ( x + π 2 ) + π 2 ) \cos{((x+\frac{\pi}{2})+\frac{\pi}{2})} cos((x+2π)+2π)= cos ( x + 2 ⋅ π 2 ) \cos{(x+2\cdot\frac{\pi}{2})} cos(x+2⋅2π)
类似的可以得到: ( cos a x + b ) ( n ) (\cos{ax+b})^{(n)} (cosax+b)(n)= a n cos ( a x + b + n π 2 ) a^{n}\cos(ax+b+n\frac{\pi}{2}) ancos(ax+b+n2π)
y = x k y=x^{{k}} y=xk, k {k} k是任意常数 ( k ∈ R ) ({k}\in\mathbb{R}) (k∈R),求 y ( n ) y^{(n)} y(n);类似的求 y 1 = ( ( x + a ) k ) ( n ) y_1=((x+a)^k)^{(n)} y1=((x+a)k)(n)
| n n n | ( x k ) ( n ) (x^{{k}})^{(n)} (xk)(n) | ( ( x + a ) k ) ( n ) ((x+a)^k)^{(n)} ((x+a)k)(n) |
|---|---|---|
| 1 | k x k − 1 {k}{x}^{{k}-1} kxk−1 | k ( x + a ) k − 1 {k}{(x+a)}^{{k}-1} k(x+a)k−1 |
| 2 | k ( k − 1 ) x k − 2 {k}({k}-1)x^{{k}-2} k(k−1)xk−2 | k ( k − 1 ) ( x + a ) k − 2 {k}({k}-1)(x+a)^{{k}-2} k(k−1)(x+a)k−2 |
| 3 | k ( k − 1 ) ( k − 2 ) x k − 3 {k}({k}-1)({k}-2)x^{{k}-3} k(k−1)(k−2)xk−3 | k ( k − 1 ) ( k − 2 ) ( x + a ) k − 3 {k}({k}-1)({k}-2)(x+a)^{{k}-3} k(k−1)(k−2)(x+a)k−3 |
| ⋮ \vdots ⋮ | ⋮ \vdots ⋮ | ⋮ \vdots ⋮ |
| n n n | k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) x k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}x^{{k}-n} k(k−1)(k−2)⋯(k−n+1)xk−n | k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) ( x + a ) k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}(x+a)^{{k}-n} k(k−1)(k−2)⋯(k−n+1)(x+a)k−n |
y 1 ( n ) y_1^{(n)} y1(n),即 ( ( x + a ) k ) ( n ) ((x+a)^k)^{(n)} ((x+a)k)(n)= k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) ( x + a ) k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}(x+a)^{{k}-n} k(k−1)(k−2)⋯(k−n+1)(x+a)k−n
对于 y ( n ) y^{(n)} y(n)(即 y 1 ( n ) , a = 0 y_1^{(n)},a=0 y1(n),a=0):
对于 y 1 ( n ) , a = 1 y_1^{(n)},a=1 y1(n),a=1的时候,即 ( ( x + 1 ) k ) ( n ) ((x+1)^k)^{(n)} ((x+1)k)(n)= k ( k − 1 ) ( k − 2 ) ⋯ ( k − n + 1 ) ( x + 1 ) k − n {k}({k}-1)({k}-2)\cdots{(k-n+1)}(x+1)^{{k}-n} k(k−1)(k−2)⋯(k−n+1)(x+1)k−n
( 1 x ) ( n ) (\frac{1}{x})^{(n)} (x1)(n)= ( − 1 ) n n ! x − ( n + 1 ) (-1)^n n!x^{-(n+1)} (−1)nn!x−(n+1)
1 x = x − 1 \frac{1}{x}=x^{-1} x1=x−1
| n n n | 导数 |
|---|---|
| 1 | − 1 x − 2 -1x^{-2} −1x−2 |
| 2 | ( − 1 ) ( − 2 ) x − 3 (-1)(-2)x^{-3} (−1)(−2)x−3 |
| 3 | ( − 1 ) ( − 2 ) ( − 3 ) x − 4 (-1)(-2)(-3)x^{-4} (−1)(−2)(−3)x−4 |
| … | … |
| n | ( − 1 ) ( − 2 ) ( − 3 ) ⋯ ( − n ) x − ( n + 1 ) (-1)(-2)(-3)\cdots(-n)x^{-(n+1)} (−1)(−2)(−3)⋯(−n)x−(n+1)= ( − 1 ) n n ! x − ( n + 1 ) (-1)^n n!x^{-(n+1)} (−1)nn!x−(n+1) |
P i ( x ) = a 0 + ∑ k = 1 n a k ( x − x 0 ) k P_i(x)=a_0+\sum\limits_{k=1}^{n} {a_k}(x-x_0)^{k} Pi(x)=a0+k=1∑nak(x−x0)k
对于i阶逼近函数P_i,对其求k阶导数;
P
i
(
k
)
(
x
0
)
=
0
+
∑
0
+
a
k
k
!
+
∑
0
=
a
k
k
!
P_i^{(k)}(x_0)=0+\sum\limits0+a_{k}k!+\sum\limits0=a_kk!
Pi(k)(x0)=0+∑0+akk!+∑0=akk!
根据约束条件 f ( k ) ( x 0 ) f^{(k)}{(x_0)} f(k)(x0)
从而得到 a k = f ( k ) ( x 0 ) k ! a_k=\frac{f^{(k)}{(x_0)}}{k!} ak=k!f(k)(x0)
α = n 的时候 , f ( n ) ( x ) = α ! ( α − n ) ! = n ! \alpha=n的时候,f^{(n)}(x)=\frac{\alpha!}{(\alpha-n)!}=n! α=n的时候,f(n)(x)=(α−n)!α!=n!
y = ln ( 1 + x ) y=\ln(1+x) y=ln(1+x),求 y ( n ) y^{(n)} y(n)
| 阶数 n n n | ( ln x ) ( n ) (\ln{x})^{(n)} (lnx)(n) | ( ln ( 1 + x ) ) ( n ) (\ln(1+x))^{(n)} (ln(1+x))(n) |
|---|---|---|
| 1 | 1 x \frac{1}{x} x1 | 1 1 + x \frac{1}{1+x} 1+x1 |
| 2 | − 1 x 2 -\frac{1}{x^2} −x21 | − 1 ( 1 + x ) 2 -\frac{1}{(1+x)^2} −(1+x)21 |
| 3 | − ( − 1 x 4 ) 2 x -(-\frac{1}{x^{4}})2x −(−x41)2x= 1 × 2 x 3 \frac{1\times{2}}{x^3} x31×2 | − ( − 1 ( 1 + x ) 4 ⋅ 2 ( 1 + x ) ⋅ 1 ) -(-\frac{1}{(1+x)^4}\cdot{2(1+x)}\cdot{1}) −(−(1+x)41⋅2(1+x)⋅1)= 1 ⋅ 2 ( 1 + x ) 3 \frac{1\cdot{2}}{(1+x)^3} (1+x)31⋅2 |
| 4 | − 1 × 2 × 3 1 x 4 -1\times{2}\times{3}\frac{1}{x^{4}} −1×2×3x41 | − 1 ⋅ 2 ⋅ 3 ( 1 + x ) 4 -\frac{1\cdot{2}\cdot{3}}{(1+x)^4} −(1+x)41⋅2⋅3 |
| ⋮ \vdots ⋮ | ⋮ \vdots ⋮ | ⋮ \vdots ⋮ |
| n n n | ( 1 x ) ( n − 1 ) (\frac{1}{x})^{(n-1)} (x1)(n−1)= ( − 1 ) n − 1 ( n − 1 ) ! x − n (-1)^{n-1} (n-1)!x^{-n} (−1)n−1(n−1)!x−n | ( − 1 ) n − 1 ( n − 1 ) ! ( 1 + x ) n (-1)^{n-1}\frac{(n-1)!}{(1+x)^{n}} (−1)n−1(1+x)n(n−1)! |