中国大学MOOC-陈越、何钦铭-数据结构-2022夏
2 天
08-图8 How Long Does It Take
分数 25
作者 陈越
单位 浙江大学
Given the relations of all the activities of a project, you are supposed to find the earliest completion time of the project.
Each input file contains one test case. Each case starts with a line containing two positive integers N (≤100), the number of activity check points (hence it is assumed that the check points are numbered from 0 to N−1), and M, the number of activities. Then M lines follow, each gives the description of an activity. For the i-th activity, three non-negative numbers are given: S[i], E[i], and L[i], where S[i] is the index of the starting check point, E[i] of the ending check point, and L[i] the lasting time of the activity. The numbers in a line are separated by a space.
For each test case, if the scheduling is possible, print in a line its earliest completion time; or simply output "Impossible".
- 9 12
- 0 1 6
- 0 2 4
- 0 3 5
- 1 4 1
- 2 4 1
- 3 5 2
- 5 4 0
- 4 6 9
- 4 7 7
- 5 7 4
- 6 8 2
- 7 8 4
18
- 4 5
- 0 1 1
- 0 2 2
- 2 1 3
- 1 3 4
- 3 2 5
Impossible
coding :
- #include <iostream>
- #include <algorithm>
- #include <queue>
- #include <stack>
-
- using namespace std;
-
- struct ENode
- {
- int v;
- int cost;
- };
-
- const int maxn = 110;
- vector<ENode> Adj[maxn];
- int ve[maxn];
- int inDegree[maxn];
- stack<int> topOrder;
-
- int Nv,Ne;
-
- void Read(); //读入数据
- bool topSort();
-
- int main()
- {
- Read();
- if(topSort()==false)
- cout << "Impossible\n";
- else
- {
- //cout << ve[Nv-1] << endl; //直接输出ve[Nv-1] 有可能不对,当最后完成的任务不是第Nv件事件时;
- cout << *max_element(ve,ve+Nv) << endl;
- }
- return 0;
- }
-
- void Read() //读入数据
- {
- cin >> Nv >> Ne;
- for(int i=0;i<Ne;++i)
- {
- int u,v,cost;
- cin >> u >> v >> cost;
- Adj[u].push_back({v,cost});
- inDegree[v]++;
- }
- }
-
- bool topSort()
- {
- //fill(ve,ve+Nv,0);
- queue<int> q;
- for(int i=0;i<Nv;++i)
- if(inDegree[i]==0)
- q.push(i);
-
- while(!q.empty())
- {
- int u=q.front();
- q.pop();
- topOrder.push(u);
-
- for(int i=0;i<Adj[u].size();++i)
- {
- int v=Adj[u][i].v;
- inDegree[v]--;
- if(inDegree[v]==0)
- q.push(v);
-
- if(ve[u]+Adj[u][i].cost > ve[v])
- {
- ve[v]=ve[u]+Adj[u][i].cost;
- }
- }
- }
-
- if(topOrder.size() == Nv)
- return true;
- else
- return false;
- }