难度:困难
相关标签:栈、字符串、动态规划
给你一个只包含 '('和 ')'的字符串,找出最长有效(格式正确且连续)括号子串的长度。
示例 1:
输入:s = "(()"
输出:2
解释:最长有效括号子串是 "()"
示例 2:
输入:s = ")()())"
输出:4
解释:最长有效括号子串是 "()()"
示例 3:
输入:s = ""
输出:0
提示:
0 <= s.length <= 3 * 104
s[i] 为 '(' 或 ')'
方法一(官方答案):动态规划
思路和算法:

代码:
- class Solution {
- public int longestValidParentheses(String s) {
-
- //官方答案
- int maxans = 0;
- int[] dp = new int[s.length()];
- for (int i = 1; i < s.length(); i++) {
- if (s.charAt(i) == ')') {
- if (s.charAt(i - 1) == '(') {
- dp[i] = (i >= 2 ? dp[i - 2] : 0) + 2;
- } else if (i - dp[i - 1] > 0 && s.charAt(i - dp[i - 1] - 1) == '(') {
- dp[i] = dp[i - 1] + ((i - dp[i - 1]) >= 2 ? dp[i - dp[i - 1] - 2] : 0) + 2;
- }
- maxans = Math.max(maxans, dp[i]);
- }
- }
- return maxans;
- }
- }
方法二(自己的方法):栈
- class Solution {
- public int longestValidParentheses(String s) {
-
- //我自己的答案,打败5%的对手
- int[] flag = new int[ s.length() ]; //0:表示没匹对的, 1:表示又匹对的, 2-表示( , 3-表示)
-
- int n = 0;
- int longest = 0; //记录最长括号对
- Stack<Integer> stack = new Stack<>();
- for ( int i = 0; i < s.length(); i++ ) {
- char c = s.charAt( i );
- if( c == '(' ) {
- stack.push( i );
- flag[ i ] = 2;
- n ++;
- }
- else if( c == ')' ) {
- flag[ i ] = 3;
- if ( stack.size() > 0 ) {
- flag[ i ] = 1;
- int j = stack.pop();
- flag[ j ] = 1;
- }
- }
- }
- String t = "";
- for ( int i : flag )
- t += i;
- System.out.println( t );
- String[] str = t.split("2|3" );
- for ( int i = 0; i < str.length; i++ ) {
- if ( ! str[ i ].contains( "3" ) ) {
- longest = Math.max( longest, str[ i ].length() );
- }
- }
-
- return longest;
- }
官方的栈的方法(用Deque打败54%对手,用stack打败20+%的对手):
- class Solution {
- public int longestValidParentheses(String s) {
-
- int maxans = 0;
- Deque<Integer> stack = new LinkedList<Integer>();
- // Stack<Integer> stack = new Stack<>();
- stack.push(-1);
- for (int i = 0; i < s.length(); i++) {
- if (s.charAt(i) == '(') {
- stack.push(i);
- } else {
- stack.pop();
- if (stack.isEmpty()) {
- stack.push(i);
- } else {
- maxans = Math.max(maxans, i - stack.peek());
- }
- }
- }
- return maxans;
- }
- }