文章来源:华为云论坛_云计算论坛_开发者论坛_技术论坛-华为云
1 概述
本文将介绍如何将PyTorch源码转换成MindSpore低阶API代码,并在Ascend芯片上实现单机单卡训练。
下图展示了MindSpore高阶API、低阶API和PyTorch的训练流程的区别。

与MindSpore高阶API相同,低阶API训练也需要进行:配置运行信息、数据读取和预处理、网络定义、定义损失函数和优化器。具体步骤同高阶API。
2 构造模型(低阶API)
构造模型时,首先将网络原型与损失函数封装,再将组合的模型与优化器封装,最终组合成一个可用于训练的网络。 由于训练并验证中,需计算在训练集上的精度 ,因此返回值中需包含网络的输出值。
- import mindsporefrom mindspore import Modelimport mindspore.nn as nnfrom mindspore.ops import functional as Ffrom mindspore.ops import operations as P
- class BuildTrainNetwork(nn.Cell):
- '''Build train network.'''
- def __init__(self, my_network, my_criterion, train_batch_size, class_num):
- super(BuildTrainNetwork, self).__init__()
- self.network = my_network
- self.criterion = my_criterion
- self.print = P.Print()
- # Initialize self.output
- self.output = mindspore.Parameter(Tensor(np.ones((train_batch_size,
- class_num)), mindspore.float32), requires_grad=False)
-
- def construct(self, input_data, label):
- output = self.network(input_data)
- # Get the network output and assign it to self.output
- self.output = output
- loss0 = self.criterion(output, label)
- return loss0
- class TrainOneStepCellV2(TrainOneStepCell):
- '''Build train network.'''
- def __init__(self, network, optimizer, sens=1.0):
- super(TrainOneStepCellV2, self).__init__(network, optimizer, sens=1.0)
-
- def construct(self, *inputs):
- weights = self.weights
- loss = self.network(*inputs)
- # Obtain self.network from BuildTrainNetwork
- output = self.network.output
- sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
- # Get the gradient of the network parameters
- grads = self.grad(self.network, weights)(*inputs, sens)
- grads = self.grad_reducer(grads)
- # Optimize model parameters
- loss = F.depend(loss, self.optimizer(grads))
- return loss, output
- # Construct model
- model_constructed = BuildTrainNetwork(net, loss_function, TRAIN_BATCH_SIZE, CLASS_NUM)
- model_constructed = TrainOneStepCellV2(model_constructed, opt)
3 训练并验证(低阶API)
和PyTorch中类似,采用低阶API进行网络训练并验证。详细步骤如下:
- class CorrectLabelNum(nn.Cell):
-
- def __init__(self):
- super(CorrectLabelNum, self).__init__()
- self.print = P.Print()
- self.argmax = mindspore.ops.Argmax(axis=1)
- self.sum = mindspore.ops.ReduceSum()
-
-
- def construct(self, output, target):
- output = self.argmax(output)
- correct = self.sum((output == target).astype(mindspore.dtype.float32))
- return correct
- def train_net(model, network, criterion,
- epoch_max, train_path, val_path,
-
- train_batch_size, val_batch_size,
- repeat_size):
-
- """define the training method"""
- # Create dataset
- ds_train, steps_per_epoch_train = create_dataset(train_path,
- do_train=True, batch_size=train_batch_size, repeat_num=repeat_size)
- ds_val, steps_per_epoch_val = create_dataset(val_path, do_train=False,
- batch_size=val_batch_size, repeat_num=repeat_size)
-
-
- # CheckPoint CallBack definition
- config_ck = CheckpointConfig(save_checkpoint_steps=steps_per_epoch_train,
- keep_checkpoint_max=epoch_max)
- ckpoint_cb = ModelCheckpoint(prefix="train_resnet_cifar10",
- directory="./", config=config_ck)
-
-
- # Create dict to save internal callback object's parameters
- cb_params = _InternalCallbackParam()
- cb_params.train_network = model
- cb_params.epoch_num = epoch_max
- cb_params.batch_num = steps_per_epoch_train
- cb_params.cur_epoch_num = 0
- cb_params.cur_step_num = 0
- run_context = RunContext(cb_params)
- ckpoint_cb.begin(run_context)
-
-
- print("============== Starting Training ==============")
- correct_num = CorrectLabelNum()
- correct_num.set_train(False)
-
- for epoch in range(epoch_max):
- print("
- Epoch:", epoch+1, "/", epoch_max)
- train_loss = 0
- train_correct = 0
- train_total = 0
- for _, (data, gt_classes) in enumerate(ds_train):
- model.set_train()
- loss, output = model(data, gt_classes)
- train_loss += loss
- correct = correct_num(output, gt_classes)
- correct = correct.asnumpy()
- train_correct += correct.sum()
- # Update current step number
- cb_params.cur_step_num += 1
- # Check whether to save checkpoint or not
- ckpoint_cb.step_end(run_context)
-
- cb_params.cur_epoch_num += 1
- my_train_loss = train_loss/steps_per_epoch_train
- my_train_accuracy = 100*train_correct/(train_batch_size*
- steps_per_epoch_train)
- print('Train Loss:', my_train_loss)
- print('Train Accuracy:', my_train_accuracy, '%')
-
- print('evaluating {}/{} ...'.format(epoch + 1, epoch_max))
- val_loss = 0
- val_correct = 0
- for _, (data, gt_classes) in enumerate(ds_val):
- network.set_train(False)
- output = network(data)
- loss = criterion(output, gt_classes)
- val_loss += loss
- correct = correct_num(output, gt_classes)
- correct = correct.asnumpy()
- val_correct += correct.sum()
-
-
- my_val_loss = val_loss/steps_per_epoch_val
- my_val_accuracy = 100*val_correct/(val_batch_size*steps_per_epoch_val)
- print('Validation Loss:', my_val_loss)
- print('Validation Accuracy:', my_val_accuracy, '%')
-
-
- print("--------- trains out ---------")
4 运行脚本
启动命令:
python MindSpore_1P_low_API.py --data_path=xxx --epoch_num=xxx
在开发环境的Terminal中运行脚本,可以看到网络输出结果:

注:由于高阶API采用数据下沉模式进行训练,而低阶API不支持数据下沉训练,因此高阶API比低阶API训练速度快。
性能对比:低阶API: 2000 imgs/sec ;高阶API: 2200 imgs/sec
详细代码请前往MindSpore论坛进行下载:华为云论坛_云计算论坛_开发者论坛_技术论坛-华为云