移位距离假设
(A,B)---m*n*k---(1,0)(0,1)

用神经网络分类A和B,把参与分类的A和B中的数字看作是组成A和B的粒子,分类的过程就是让A和B中的粒子互相交换位置,寻找最短移位路径的过程。而熵H与最短移位距离S成正比,迭代次数n与S成反比。
移位规则汇总
移位距离就是等位点数值差的绝对值的和S=Σ|a-b|,如果训练集有多张图片取平均值。
如对一组3*3的矩阵

S=s0+s1+,…,+s8=|a0-b0|+|a1-b1|+,…,+|a8-b8|
这次继续在多张图片的训练集上验证这一假设,
(A B C D,E)---2*4*2---(1,0)(0,1)
让一个训练集里有4张图片,另一个训练集里只有1张图片。如分类01-01-01-11-01,意思是让图片(0,1),(0,1),(0,1),(1,1)组成一个训练集和由(0,1)单张图片组成的另一个训练集分类。
进样顺序为
| 0 | 1 | 0 | 1 | |
| 0 | 1 | 0 | 1 | |
| 0 | 1 | 0 | 1 | |
| 1 | 1 | 0 | 1 |
不断迭代直到收敛,统计迭代次数的平均值并比较。
实验一共进行了18组
| S平均 | s | δ | 0.01 | 0.001 | 9.00E-04 | 8.00E-04 | 7.00E-04 | |||
| 0.25 | 4 | 1 | a | 01-01-01-11-01 | 迭代次数n | 18144.70854 | 188142.4774 | 213672.8693 | 242977.5126 | 279159.8241 |
| 0.25 | 4 | 1 | a | 01-11-11-11-11 | 迭代次数n | 17096.72864 | 142925.9749 | 165453.2513 | 186456.9497 | 212697.8141 |
| 0.5 | 4 | 2 | a | 01-11-11-10-11 | 迭代次数n | 20972.23618 | 142737.7136 | 161793.5528 | 178644.9899 | 205024.2261 |
| 0.5 | 4 | 2 | a | 01-10-10-10-10 | 迭代次数n | 12976.46734 | 99099.20101 | 107067.2613 | 122917.392 | 141186.8593 |
| 0.75 | 4 | 3 | a | 01-01-10-11-11 | 迭代次数n | 12678.23618 | 82784.84925 | 93469.57286 | 105375.0804 | 119633.4925 |
| 0.75 | 4 | 3 | a | 01-01-10-11-11 | 迭代次数n | 12565.82412 | 83697.58291 | 92503.33166 | 102580.3869 | 119529.2312 |
| 0.75 | 4 | 3 | a | 10-10-01-11-11 | 迭代次数n | 12574.41709 | 85400.36683 | 95183.62312 | 104363.5829 | 117645.2513 |
| 1 | 4 | 4 | a | 01-01-10-01-11 | 迭代次数n | 11708.92462 | 74522.27136 | 81231.25628 | 90825.94472 | 99312.62312 |
| 0.5 | 4 | 2 | a | 01-11-11-01-11 | 迭代次数n | 8346.708543 | 68757.78392 | 76703.89447 | 86024.45729 | 97767.33166 |
| 0.75 | 4 | 3 | a | 01-11-11-11-01 | 迭代次数n | 5823.070352 | 53776.9196 | 60026.76884 | 69807.63317 | 81018.48744 |
| 0.75 | 4 | 3 | a | 01-01-11-01-11 | 迭代次数n | 5476.758794 | 42831.77387 | 47461.32161 | 53719.83417 | 61526.50754 |
| 1.25 | 4 | 5 | a | 01-10-11-01-10 | 迭代次数n | 6387.78392 | 41361.81407 | 45080.76884 | 48447.54271 | 56762.33668 |
| 1.5 | 4 | 6 | a | 01-01-10-01-10 | 迭代次数n | 4461.643216 | 32915.71357 | 35767.91457 | 40803.11055 | 47348.63819 |
| 1 | 4 | 4 | a | 01-11-11-10-01 | 迭代次数n | 4313.984925 | 28222.38693 | 29561.48241 | 33752.15578 | 38202.18593 |
| 1 | 4 | 4 | a | 01-10-11-11-10 | 迭代次数n | 4213.190955 | 27683.24121 | 29874.19598 | 33060.92965 | 36999.28141 |
| 1.25 | 4 | 5 | a | 01-10-11-01-10 | 迭代次数n | 4070.407035 | 26545.92462 | 28936.51759 | 31539.83417 | 36979.81407 |
| 1.75 | 4 | 7 | a | 01-01-11-01-10 | 迭代次数n | 2949.78392 | 16515.96985 | 18156.97487 | 20115.98492 | 22811.30653 |
| 1.25 | 4 | 5 | a | 01-11-11-11-10 | 迭代次数n | 3140.025126 | 16433.49749 | 17977.34171 | 20181.01005 | 22000.04523 |
当收敛误差为7e-4的时候迭代次数最大的是01-01-01-11-01,最小的网络是01-11-11-11-10,二者相差了12倍。
由于对称关系
| 01-01-10-11-11 | 迭代次数n | 12678.23618 | 82784.84925 | 93469.57286 | 105375.0804 | 119633.4925 |
| 01-01-10-11-11 | 迭代次数n | 12565.82412 | 83697.58291 | 92503.33166 | 102580.3869 | 119529.2312 |
| 10-10-01-11-11 | 迭代次数n | 12574.41709 | 85400.36683 | 95183.62312 | 104363.5829 | 117645.2513 |
这3组数据是一致的。
| 01-11-11-10-01 | 迭代次数n | 4313.984925 | 28222.38693 | 29561.48241 | 33752.15578 | 38202.18593 |
| 01-10-11-11-10 | 迭代次数n | 4213.190955 | 27683.24121 | 29874.19598 | 33060.92965 | 36999.28141 |
这两组也同样彼此对称是一致的。
计算移位距离,如对01-01-01-11-01
| s | ||||||
| 0 | 1 | 0 | 1 | 0 | ||
| 0 | 1 | 0 | 1 | 0 | ||
| 0 | 1 | 0 | 1 | 0 | ||
| 1 | 1 | 0 | 1 | 1 |
因为有4张图片因此S平均=(0+0+0+1)/4=0.25


比较S曲线和n曲线,尽管S曲线起伏较大,但二者之间的反比关系仍然是清晰的。


比较训练集只有3张图片的网络的S曲线和训练集只有两张图片的S曲线,这次得到的S曲线已经平滑了很多。
可以合理猜测迭代次数体现的形态差异由两部分组成,一部分是由于等位点数值差导致的线性的部分,而另一部分是由于结构对称关系引起的不规则的部分。
| s | ||||||
| 0 | 1 | 1 | 1 | 1 | ||
| 0 | 1 | 1 | 1 | 1 | ||
| 0 | 1 | 1 | 1 | 1 | ||
| 1 | 0 | 1 | 1 | 1 |
比如01*01*11和01*10*11这两个网络他们的S平均都是1,但是01和01之间是镜像对称,而01*10之间是旋转对称,这两组截然不同的对称关系导致他们平均移位距离S都相同的情况下迭代次数差异巨大。
| s | ||||||
| 0 | 1 | 1 | 1 | 1 | ||
| 0 | 1 | 1 | 1 | 1 | ||
| 1 | 1 | 1 | 1 | 0 | ||
| 0 | 1 | 1 | 1 | 1 | ||
| 1 | 0 | 1 | 1 | 1 | ||
| 1 | 1 | 1 | 1 | 0 |
但如果在训练集中多加一张图片使两个网络变成01*01*11*11和01*10*11*11,由于11的出现01*01之间的镜像关系和01*10之间的旋转关系都被弱化了,因此由于对称导致的这种耦合作用被减弱,更多的体现了由于移位距离导致的线性的差异,因而随着图片的增加S曲线表现出更多的梯度,变得更为平滑。
| S平均 | s | δ | 0.01 | 0.001 | 9.00E-04 | 8.00E-04 | 7.00E-04 | |||
| 0.25 | 4 | 1 | a | 01-01-01-11-01 | 迭代次数n | 18144.70854 | 188142.4774 | 213672.8693 | 242977.5126 | 279159.8241 |
| 0.25 | 4 | 1 | a | 01-11-11-11-11 | 迭代次数n | 17096.72864 | 142925.9749 | 165453.2513 | 186456.9497 | 212697.8141 |
| 0.333333 | 3 | 1 | b | 01-01-11-01 | 迭代次数n | 13432.36 | 139891.7 | 157113.9 | 179519.3 | 207188.2 |
| 0.5 | 4 | 2 | a | 01-11-11-10-11 | 迭代次数n | 20972.23618 | 142737.7136 | 161793.5528 | 178644.9899 | 205024.2261 |
| 0.333333 | 3 | 1 | b | 01-11-11-11 | 迭代次数n | 12676.79 | 107286.2 | 117513.9 | 133028.4 | 154503.1 |
| 0.666667 | 3 | 2 | b | 01-11-10-11 | 迭代次数n | 15719.23 | 104694.3 | 114401.5 | 126914.8 | 147143.7 |
| 0.5 | 4 | 2 | a | 01-10-10-10-10 | 迭代次数n | 12976.46734 | 99099.20101 | 107067.2613 | 122917.392 | 141186.8593 |
| 0.5 | 2 | 1 | 17 | 01*11*01 | 迭代次数n | 9032.397 | 90425.22 | 101844 | 116066.1 | 135622.8 |
| 1 | 2 | 2 | 16 | 01*10*11 | 迭代次数n | 13090.89 | 86782.35 | 95818.05 | 105586.1 | 122018.8 |
| 0.75 | 4 | 3 | a | 01-01-10-11-11 | 迭代次数n | 12678.23618 | 82784.84925 | 93469.57286 | 105375.0804 | 119633.4925 |
| 0.75 | 4 | 3 | a | 01-01-10-11-11 | 迭代次数n | 12565.82412 | 83697.58291 | 92503.33166 | 102580.3869 | 119529.2312 |
| 0.75 | 4 | 3 | a | 10-10-01-11-11 | 迭代次数n | 12574.41709 | 85400.36683 | 95183.62312 | 104363.5829 | 117645.2513 |
| 1 | 3 | 3 | b | 01-01-10-11 | 迭代次数n | 12799.57 | 86593.53 | 94449.04 | 104090.8 | 116335.3 |
| 0.666667 | 3 | 2 | b | 01-10-10-10 | 迭代次数n | 9729.462 | 71300.71 | 81367.92 | 92317.08 | 105625.9 |
| 0.5 | 2 | 1 | 19 | 01*11*11 | 迭代次数n | 8406.095 | 69204.37 | 75918.46 | 87127.38 | 99695.94 |
| 1 | 4 | 4 | a | 01-01-10-01-11 | 迭代次数n | 11708.92462 | 74522.27136 | 81231.25628 | 90825.94472 | 99312.62312 |
| 0.5 | 2 | 1 | 19 | 10*11*11 | 迭代次数n | 8452.266 | 69044.21 | 77609.65 | 85774.66 | 98321.27 |
| 0.5 | 4 | 2 | a | 01-11-11-01-11 | 迭代次数n | 8346.708543 | 68757.78392 | 76703.89447 | 86024.45729 | 97767.33166 |
| 0.666667 | 3 | 2 | b | 01-11-11-01 | 迭代次数n | 6608.085 | 63333.77 | 71977.75 | 83191.75 | 96217.09 |
| 0.75 | 4 | 3 | a | 01-11-11-11-01 | 迭代次数n | 5823.070352 | 53776.9196 | 60026.76884 | 69807.63317 | 81018.48744 |
| 0.666667 | 3 | 2 | b | 01-01-11-11 | 迭代次数n | 6267.251 | 49675.77 | 55069.35 | 62602.73 | 71207.15 |
| 1 | 2 | 2 | 14 | 01*10*01 | 迭代次数n | 6562.407 | 49626.37 | 53976.52 | 62830.33 | 70601 |
| 0.666667 | 3 | 2 | b | 11-01-01-11 | 迭代次数n | 6198.186 | 49881.95 | 55585.57 | 62915.46 | 70390.47 |
| 1 | 2 | 2 | 13 | 01*10*10 | 迭代次数n | 6598.779 | 49677.57 | 55886.44 | 61773.39 | 69684.19 |
| 0.75 | 4 | 3 | a | 01-01-11-01-11 | 迭代次数n | 5476.758794 | 42831.77387 | 47461.32161 | 53719.83417 | 61526.50754 |
| 1.25 | 4 | 5 | a | 01-10-11-01-10 | 迭代次数n | 6387.78392 | 41361.81407 | 45080.76884 | 48447.54271 | 56762.33668 |
| 1.333333 | 3 | 4 | b | 01-01-10-10 | 迭代次数n | 4923.854 | 36408.93 | 40618.85 | 46367.03 | 53840.08 |
| 1.333333 | 3 | 4 | b | 01-10-01-10 | 迭代次数n | 5078.638 | 36479.74 | 40784.88 | 45512.43 | 52834.54 |
| 1.5 | 4 | 6 | a | 01-01-10-01-10 | 迭代次数n | 4461.643216 | 32915.71357 | 35767.91457 | 40803.11055 | 47348.63819 |
| 1 | 3 | 3 | b | 01-10-11-10 | 迭代次数n | 4718.648 | 29763.91 | 33889.95 | 37498.31 | 42272.53 |
| 1 | 4 | 4 | a | 01-11-11-10-01 | 迭代次数n | 4313.984925 | 28222.38693 | 29561.48241 | 33752.15578 | 38202.18593 |
| 1 | 2 | 2 | 11 | 01*01*11 | 迭代次数n | 4492.035 | 26777.36 | 29753.34 | 32949.8 | 37123.12 |
| 1 | 4 | 4 | a | 01-10-11-11-10 | 迭代次数n | 4213.190955 | 27683.24121 | 29874.19598 | 33060.92965 | 36999.28141 |
| 1.25 | 4 | 5 | a | 01-10-11-01-10 | 迭代次数n | 4070.407035 | 26545.92462 | 28936.51759 | 31539.83417 | 36979.81407 |
| 1 | 2 | 2 | 21 | 11*11*01 | 迭代次数n | 4503.588 | 27240.86 | 29794.58 | 33117.16 | 36974.64 |
| 2 | 2 | 4 | 10 | 01*01*10 | 迭代次数n | 3456.523 | 22841.7 | 25195.83 | 28372.41 | 31827.38 |
| 1.75 | 4 | 7 | a | 01-01-11-01-10 | 迭代次数n | 2949.78392 | 16515.96985 | 18156.97487 | 20115.98492 | 22811.30653 |
| 1.333333 | 3 | 4 | b | 01-11-11-10 | 迭代次数n | 3028.879 | 15452.6 | 17931.25 | 19334.8 | 22579.88 |
| 1.5 | 2 | 3 | 18 | 01*11*10 | 迭代次数n | 2946.296 | 16381.41 | 16983.82 | 19169.93 | 22057.13 |
| 1.25 | 4 | 5 | a | 01-11-11-11-10 | 迭代次数n | 3140.025126 | 16433.49749 | 17977.34171 | 20181.01005 | 22000.04523 |
| 1.666667 | 3 | 5 | b | 01-01-11-10 | 迭代次数n | 3010.307 | 16673.54 | 17539.43 | 19642.51 | 21521.67 |
将网络
(A B ,C )---2*4*2---(1,0)(0,1)
(A B C ,D)---2*4*2---(1,0)(0,1)
(A B C D,E)---2*4*2---(1,0)(0,1)
的数据放在一起比较


尽管S曲线显得不够平滑,但S和n之间的反比关系是一致的,表明在网络结构一致的前提下移位假设适用于所有训练集,无论训练集里有多少图片,图片越多,线性作用越突出,结果越精确。