• 【数理方程】分离变量法


    2分离变量法

    2.0常微分方程

    2.0.1齐次&非齐次方程

    • 齐次方程 y ′ ( x ) = P ( x ) y ( x ) y'(x)=P(x)y(x) y(x)=P(x)y(x) 分离变量,两边积分
      • y ( x ) = C e ∫ P ( x ) d x y(x)=Ce^{\int P(x)dx} y(x)=CeP(x)dx
      • P(x)为常数 y ′ ( x ) = m y ( x ) → y ( x ) = C e m x y'(x)=my(x)\rightarrow y(x)=Ce^{mx} y(x)=my(x)y(x)=Cemx
    • 非齐次方程 y ′ ( x ) = P ( x ) y ( x ) + Q ( x ) y'(x)=P(x)y(x)+Q(x) y(x)=P(x)y(x)+Q(x) 常数变异法
      • y ( x ) = e ∫ P ( x ) d x ( ∫ Q ( x ) ⋅ e − ∫ P ( x ) d x d x + C ) y(x)=e^{\int P(x)dx}(\int Q(x)\cdot e^{-\int P(x)dx}dx+C) y(x)=eP(x)dx(Q(x)eP(x)dxdx+C)

    2.0.2二阶常系数齐次常微分方程

    a 2 y ′ ′ ( x ) + a 1 y ′ ( x ) + a 0 y ( x ) = 0 a_2y''(x)+a_1y'(x)+a_0y(x)=0 a2y′′(x)+a1y(x)+a0y(x)=0

    • 特征方程: a 2 r 2 + a 1 r + a 0 = 0 a_2r^2+a_1r+a_0=0 a2r2+a1r+a0=0, r特征根

    • 2实根 r 1 ≠ r 2 r_1\neq r_2 r1=r2: 通解 y ( x ) = A e r 1 x + B e r 2 x y(x)=Ae^{r_1x}+Be^{r_2x} y(x)=Aer1x+Ber2x

    • 1实根 r 1 = r 2 r_1=r_2 r1=r2: 通解 y ( x ) = ( A x + B ) e r x y(x)=(Ax+B)e^{rx} y(x)=(Ax+B)erx

    • 复根 r 1 = α + β i , r 2 = α − β i r_1=\alpha+\beta i, r_2=\alpha-\beta i r1=α+βi,r2=αβi: 通解 y ( x ) = e α x ( A cos ⁡ β x + B sin ⁡ β x ) y(x)=e^{\alpha x}(A\cos\beta x+B\sin\beta x) y(x)=eαx(Acosβx+Bsinβx)
      在这里插入图片描述

    • ρ 2 R ′ ′ ( ρ ) + ρ R ′ ( ρ ) − λ R ( ρ ) = 0 \rho^2R''(\rho)+\rho R'(\rho)-\lambda R(\rho)=0 ρ2R′′(ρ)+ρR(ρ)λR(ρ)=0

      • ρ = e x \rho=e^x ρ=ex

    2.1特征值问题

    2.1.1常用特征值问题

    • 常微分方程 X ′ ′ ( x ) + λ X ( x ) = 0 X''(x)+\lambda X(x)=0 X′′(x)+λX(x)=0

      • λ < 0 \lambda<0 λ<0, X ( x ) = A e − λ x + B e − − λ x X(x)=Ae^{\sqrt{-\lambda}x}+Be^{-\sqrt{-\lambda}x} X(x)=Aeλ x+Beλ x
      • λ = 0 \lambda=0 λ=0, X ( x ) = A x + B X(x)=Ax+B X(x)=Ax+B
      • λ > 0 \lambda>0 λ>0, X ( x ) = A cos ⁡ λ x + B sin ⁡ λ x X(x)=A\cos\sqrt{\lambda}x+B\sin\sqrt{\lambda}x X(x)=Acosλ x+Bsinλ x
    • 含待确定常数 λ \lambda λ的特征值问题, λ \lambda λ特征值, X ( x ) X(x) X(x)特征函数

    • { X ′ ′ ( x ) + λ X ( x ) = 0 X ( 0 ) = 0 , X ( l ) = 0 \left\{

      X(x)+λX(x)=0X(0)=0,X(l)=0" role="presentation">X(x)+λX(x)=0X(0)=0,X(l)=0
      \right. {X′′(x)+λX(x)=0X(0)=0,X(l)=0

      1. λ < 0 \lambda<0 λ<0, A=B=0, 平凡解
      2. λ = 0 \lambda=0 λ=0, A=B=0, 平凡解
      3. λ > 0 \lambda>0 λ>0, { λ n = ( n π l ) 2 X n ( x ) = B n sin ⁡ n π l x , n = 1 , 2 , 3... \left\{
        λn=(nπl)2Xn(x)=Bnsinnπlx,n=1,2,3..." role="presentation" style="position: relative;">λn=(nπl)2Xn(x)=Bnsinnπlx,n=1,2,3...
        \right.
        {λn=(l)2Xn(x)=Bnsinlx,n=1,2,3...
        1. sin ⁡ n π l x n = 1 ∞ {\sin\frac{n\pi}{l}x}_{n=1}^\infty sinlxn=1
        2. C n = 2 l ∫ 0 l f ( x ) sin ⁡ n π l x d x C_n=\frac{2}{l}\int_0^l f(x)\sin\frac{n\pi}{l}xdx Cn=l20lf(x)sinlxdx

    2.1.2关于特征值问题的理论

    • S-L方程 d d x ( k ( x ) d y d x ) − q ( x ) y ( x ) + λ ρ ( x ) y ( x ) = 0 , x ∈ ( a , b ) \frac{d}{dx}(k(x)\frac{dy}{dx})-q(x)y(x)+\lambda\rho(x)y(x)=0,x\in(a,b) dxd(k(x)dxdy)q(x)y(x)+λρ(x)y(x)=0,x(a,b)
      • 特征值:其次边界条件,周期性,自然边界条件
      • k ( x ) = ρ ( x ) = 1 , q ( x ) = 0 k(x)=\rho(x)=1,q(x)=0 k(x)=ρ(x)=1,q(x)=0: y ′ ′ ( x ) + λ y ( x ) = 0 y''(x)+\lambda y(x)=0 y′′(x)+λy(x)=0
      • k ( x ) = ρ ( x ) = x , q ( x ) = n 2 x k(x)=\rho(x)=x,q(x)=\frac{n^2}{x} k(x)=ρ(x)=x,q(x)=xn2: x 2 y ′ ′ ( x ) + x y ′ ( x ) + ( λ x 2 − n 2 ) y ( x ) = 0 x^2y''(x)+xy'(x)+(\lambda x^2-n^2)y(x)=0 x2y′′(x)+xy(x)+(λx2n2)y(x)=0
      • k ( x ) = 1 − x 2 , ρ ( x ) = 1 , q ( x ) = 0 k(x)=1-x^2,\rho(x)=1,q(x)=0 k(x)=1x2,ρ(x)=1,q(x)=0: ( 1 − x ) 2 y ′ ′ ( x ) − 2 x y ′ ( x ) + λ y ( x ) = 0 (1-x)^2y''(x)-2xy'(x)+\lambda y(x)=0 (1x)2y′′(x)2xy(x)+λy(x)=0
      1. 存在可数个实特征值->单调递增序列 0 ≤ λ 1 ≤ λ 2 ≤ . . . ≤ λ n ≤ {0\leq\lambda_1\leq\lambda_2\leq...\leq\lambda_n\leq} 0λ1λ2...λn
        可数个特征函数 { y x ( x ) } , n = 1 , 2 , 3... \{y_x(x)\}, n=1,2,3... {yx(x)},n=1,2,3...
      2. 所有特征值非负 λ n ≥ 0 , n = 1 , 2 , 3... \lambda_n\geq 0, n=1,2,3... λn0,n=1,2,3...
      3. 特征函数系 { y n ( x ) } n = 1 n = ∞ \{y_n(x)\}_{n=1}^{n=\infty} {yn(x)}n=1n= L ρ 2 [ a , b ] L_\rho^2[a,b] Lρ2[a,b]上关于权函数 ρ ( x ) \rho(x) ρ(x)的正交系 ∫ a b ρ ( x ) y n ( x ) y m ( x ) d x = { 0 n ≠ m ∣ ∣ y n ∣ ∣ 2 2 n = m \int_a^b\rho(x)y_n(x)y_m(x)dx=\left\{
        0nm||yn||22n=m" role="presentation" style="position: relative;">0nm||yn||22n=m
        \right.
        abρ(x)yn(x)ym(x)dx={0∣∣yn22n=mn=m
      4. 特征函数系 { y n ( x ) } n = 1 n = ∞ \{y_n(x)\}_{n=1}^{n=\infty} {yn(x)}n=1n= L ρ 2 [ a , b ] L_\rho^2[a,b] Lρ2[a,b]上关于权函数 ρ ( x ) \rho(x) ρ(x)的完备系

    2.1.3Matlab

    • 二阶常微分方程
      d 2 y d x 2 + y = 1 − x 2 π \frac{d^{2} y}{d x^{2}}+y=1-\frac{x^{2}}{\pi} dx2d2y+y=1πx2通解
      • y=dsolve('D2y+y=1-x^2/pi','x')
        
        • 1
      { d 2 y d x 2 + y = 1 − x 2 π y ( 0 ) = 0.2 , y ′ ( 0 ) = 0.5 \left\{
      d2ydx2+y=1x2πy(0)=0.2,y(0)=0.5" role="presentation" style="position: relative;">d2ydx2+y=1x2πy(0)=0.2,y(0)=0.5
      \right.
      {dx2d2y+y=1πx2y(0)=0.2,y(0)=0.5
      特解,作图
      • y=dsolve('D2y+y=1-x^2/pi','y(0)=0.2,Dy(0)=0.5','x')
        ezplot(y),aixs([-3 3 -0.5 2])
        
        • 1
        • 2
    • 常微分方程组 { d u d t = 3 u − 2 v d v d t + v = 2 u \left\{
      dudt=3u2vdvdt+v=2u" role="presentation" style="position: relative;">dudt=3u2vdvdt+v=2u
      \right.
      {dtdu=3u2vdtdv+v=2u

      1.求通解
      • [u,v]=dsolve('Du=3*u-2*v','Dv+v=2*u')
        
        • 1
      2.求满足初始条件 u ( 0 ) = 1 , v ( 0 ) = 0 u(0)=1,v(0)=0 u(0)=1,v(0)=0的特解
      • [u,v]=dsolve('Du=3*u-2*v','Dv+v=2*u','u(0)=1,v(0)=0','t')
        
        • 1

    2.2一维波方程,一维热方程解法

    2.2.1一维波方程

    { ∂ 2 u ∂ t 2 = a 2 ∂ 2 u ∂ x 2 0 < x < l , t > 0 u ∣ x = 0 = u ∣ x = l = 0 u ∣ t = 0 = ϕ ( x ) , ∂ u ∂ t ∣ t = 0 = ψ ( x ) \left\{

    2ut2=a22ux20<x<l,t>0u|x=0=u|x=l=0u|t=0=ϕ(x),ut|t=0=ψ(x)" role="presentation">2ut2=a22ux20<x<l,t>0u|x=0=u|x=l=0u|t=0=ϕ(x),ut|t=0=ψ(x)
    \right. t22u=a2x22u0<x<l,t>0ux=0=ux=l=0ut=0=ϕ(x),tu t=0=ψ(x)
    在这里插入图片描述

    • u n ( x , t ) u_n(x,t) un(x,t)在任意时刻为正弦曲线
      • t = t 0 t=t_0 t=t0 u n ( x , t 0 ) u_n(x,t_0) un(x,t0)为正弦曲线,振幅随时间变化
      • x = x 0 x=x_0 x=x0 u n ( x 0 , t ) u_n(x_0,t) un(x0,t)简谐振动
    • 任意确定时刻 u n ( x , t ) = A n ′ sin ⁡ n π l x u_{n}(x, t)=A_{n}^{\prime} \sin \frac{n \pi}{l} x un(x,t)=Ansinlx
      • n + 1 n+1 n+1个零点, n n n个极值点, u 1 , u 2 , u 3 u_1,u_2,u_3 u1,u2,u3是一系列驻波

    2.2.2一维热方程解法

    在这里插入图片描述

    2.3Laplace方程定解问题解法

    2.3.1直角坐标系下Laplace

    在这里插入图片描述

    2.3.2二维圆域Laplace定解问题解法

    1. 定解问题 ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0 \frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{x}^{2}}+\frac{\partial^{2} \boldsymbol{u}}{\partial \boldsymbol{y}^{2}}=0 x22u+y22u=0
    2. 极坐标变换 { x = ρ cos ⁡ θ y = ρ sin ⁡ θ , 0 ≤ θ ≤ 2 π \left\{
      x=ρcosθy=ρsinθ," role="presentation" style="position: relative;">x=ρcosθy=ρsinθ,
      \quad 0 \leq \theta \leq 2 \pi\right.
      {x=ρcosθy=ρsinθ,0θ2π
    3. ∂ u ∂ x = ∂ u ∂ ρ ∂ ρ ∂ x + ∂ u ∂ θ ∂ θ ∂ x = v \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{x}}=\frac{\partial \boldsymbol{u}}{\partial \rho} \frac{\partial \rho}{\partial \boldsymbol{x}}+\frac{\partial \boldsymbol{u}}{\partial \theta} \frac{\partial \theta}{\partial \boldsymbol{x}}=\boldsymbol{v} xu=ρuxρ+θuxθ=v代入得 $
      1ρρ(ρuρ)+1ρ22uθ2=0frac2uρ2+1ρuρ+1ρ22uθ2=0" role="presentation" style="text-align: center; position: relative;">1ρρ(ρuρ)+1ρ22uθ2=0frac2uρ2+1ρuρ+1ρ22uθ2=0
      $

    2.4非齐次方程

    波方程 { ∂ 2 u ∂ t 2 = a 2 ∂ 2 u ∂ x 2 + f ( x , t ) , 0 < x < l , t > 0 u ∣ x = 0 = u ∣ x = l = 0 u ∣ t = 0 = ϕ ( x ) , ∂ u ∂ t ∣ t = 0 = Ψ ( x ) \left\{

    2ut2=a22ux2+f(x,t),0<x<l,t>0u|x=0=u|x=l=0u|t=0=ϕ(x),ut|t=0=Ψ(x)" role="presentation" style="position: relative;">2ut2=a22ux2+f(x,t),0<x<l,t>0u|x=0=u|x=l=0u|t=0=ϕ(x),ut|t=0=Ψ(x)
    \right. t22u=a2x22u+f(x,t),0<x<l,t>0ux=0=ux=l=0ut=0=ϕ(x),tu t=0=Ψ(x)
    拆解 u ( x , t ) = v ( x , t ) + w ( x , t ) u(x,t)=v(x,t)+w(x,t) u(x,t)=v(x,t)+w(x,t)

    2.4.1特征函数法

    波方程

    { ∂ 2 v ∂ t 2 = a 2 ∂ 2 v ∂ x 2 + f ( x , t ) v ∣ x = 0 = v ∣ x = l = 0 v ∣ t = 0 = 0 , ∂ v ∂ t ∣ t = 0 = 0 \left\{

    2vt2=a22vx2+f(x,t)v|x=0=v|x=l=0v|t=0=0,vt|t=0=0" role="presentation" style="position: relative;">2vt2=a22vx2+f(x,t)v|x=0=v|x=l=0v|t=0=0,vt|t=0=0
    \right. t22v=a2x22v+f(x,t)vx=0=vx=l=0vt=0=0,tv t=0=0

    1. 齐次方程+齐次边界条件 { ∂ 2 v ∂ t 2 = a 2 ∂ 2 v ∂ x 2 v ∣ x = 0 = v ∣ x = l = 0 \left\{
      2vt2=a22vx2v|x=0=v|x=l=0" role="presentation" style="position: relative;">2vt2=a22vx2v|x=0=v|x=l=0
      \right.
      {t22v=a2x22vvx=0=vx=l=0
      1. 特征值问题 { X ′ ′ ( x ) + λ X ( x ) = 0 X ( 0 ) = X ( l ) = 0 \left\{
        X(x)+λX(x)=0X(0)=X(l)=0" role="presentation" style="position: relative;">X(x)+λX(x)=0X(0)=X(l)=0
        \right.
        {X′′(x)+λX(x)=0X(0)=X(l)=0
        1. 特征函数 X n ( x ) = B n sin ⁡ n π l x , n = 1 , 2 , . . . X_n(x)=B_n\sin\frac{n\pi}{l}x,n=1,2,... Xn(x)=Bnsinlx,n=1,2,...
        2. 假设非齐次方程解 v ( x , t ) = ∑ n = 1 ∞ v n ( t ) sin ⁡ n π l x v(x,t)=\sum_{n=1}^{\infty}v_n(t)\sin \frac{n\pi}{l}x v(x,t)=n=1vn(t)sinlx
    2. f ( x , t ) f(x,t) f(x,t)按特征函数序列 { sin ⁡ n π l x } n = 1 ∞ \{\sin\frac{n\pi}{l}x\}_{n=1}^{\infty} {sinlx}n=1展开为级数形式
      1. f ( x , t ) = ∑ n = 1 ∞ f n ( t ) sin ⁡ n π l x f(x,t)=\sum_{n=1}^{\infty}f_n(t)\sin\frac{n\pi}{l}x f(x,t)=n=1fn(t)sinlx
      2. f n ( t ) = 2 l ∫ 0 l f ( x , t ) sin ⁡ n π l x d x f_n(t)=\frac{2}{l}\int_0^lf(x,t)\sin\frac{n\pi}{l}xdx fn(t)=l20lf(x,t)sinlxdx
    3. 以上结果带入非齐次方程
      1. 在这里插入图片描述
      2. 得常微分方程问题 { v n ′ ′ ( t ) + ( n π a l ) 2 v n ( t ) = f n ( t ) v n ( 0 ) = 0 , v n ′ ( 0 ) = 0 \left\{
        vn(t)+(nπal)2vn(t)=fn(t)vn(0)=0,vn(0)=0" role="presentation" style="position: relative;">vn(t)+(nπal)2vn(t)=fn(t)vn(0)=0,vn(0)=0
        \right.
        {vn′′(t)+(lnπa)2vn(t)=fn(t)vn(0)=0,vn(0)=0
      3. Laplace变换
        1. v n ( t ) = l n π a ∫ 0 t f n ( τ ) sin ⁡ n π a ( t − τ ) l d τ \boldsymbol{v}_{n}(t)=\frac{l}{n \pi a} \int_{0}^{t} f_{n}(\tau) \sin \frac{n \pi a(t-\tau)}{l} d \tau vn(t)=nπal0tfn(τ)sinlnπa(tτ)dτ
        2. v ( x , t ) = ∑ n = 1 ∞ l n π a ∫ 0 t f n ( τ ) sin ⁡ n π a ( t − τ ) l d τ sin ⁡ n π l x \boldsymbol{v}(\boldsymbol{x}, \boldsymbol{t})=\sum_{n=1}^{\infty} \frac{l}{\boldsymbol{n} \pi a} \int_{0}^{t} f_{n}(\tau) \sin \frac{n \pi a(t-\tau)}{l} d \tau \sin \frac{n \pi}{l} \boldsymbol{x} v(x,t)=n=1nπal0tfn(τ)sinlnπa(tτ)dτsinlx
          Matlab解二阶常微分方程
    syms V n a L 
    S=dsolve(`D2V+(n*pi*a/L)^2*V=5`,`V(0)=0,DV(0)=0`,`t`)
    pretty(simple(S))
    
    • 1
    • 2
    • 3

    热方程

    { ∂ u ∂ t = a 2 ∂ 2 u ∂ x 2 + sin ⁡ ω t 0 < x < l , t > 0 ∂ u ∂ x ∣ x = 0 = ∂ u ∂ x ∣ x = l = 0 u ∣ t = 0 = 0 \left\{

    ut=a22ux2+sinωt0<x<l,t>0ux|x=0=ux|x=l=0u|t=0=0" role="presentation" style="position: relative;">ut=a22ux2+sinωt0<x<l,t>0ux|x=0=ux|x=l=0u|t=0=0
    \right. tu=a2x22u+sinωt0<x<l,t>0xu x=0=xu x=l=0ut=0=0

    1. 齐次方程+齐次边界条件 { ∂ u ∂ t = a 2 ∂ 2 u ∂ x 2 ∂ u ∂ x ∣ x = 0 = ∂ u ∂ x ∣ x = l = 0 \left\{
      ut=a22ux2ux|x=0=ux|x=l=0" role="presentation" style="position: relative;">ut=a22ux2ux|x=0=ux|x=l=0
      \right.
      {tu=a2x22uxu x=0=xu x=l=0
      1. 得特征值问题 { X ′ ′ ( x ) + λ X ( x ) = 0 X ′ ( 0 ) = X ′ ( l ) = 0 \left\{
        X(x)+λX(x)=0X(0)=X(l)=0" role="presentation" style="position: relative;">X(x)+λX(x)=0X(0)=X(l)=0
        \right.
        {X′′(x)+λX(x)=0X(0)=X(l)=0
      2. 特征函数 X n ( x ) = A n cos ⁡ n π l x , n = 0 , 1 , 2 , . . . X_n(x)=A_n\cos\frac{n\pi}{l}x,n=0,1,2,... Xn(x)=Ancoslx,n=0,1,2,...
      3. 设非齐次方程解 u ( x , t ) = ∑ n = 1 ∞ u n ( t ) cos ⁡ n π l x u(x,t)=\sum_{n=1}^\infty u_n(t)\cos\frac{n\pi}{l}x u(x,t)=n=1un(t)coslx
    2. sin ⁡ w t \sin wt sinwt按特征函数序列 { cos ⁡ n π l x } n = 0 ∞ \{\cos\frac{n\pi}{l}x\}_{n=0}^\infty {coslx}n=0展开为级数形式
      1. sin ⁡ w t = f 0 + ∑ n = 1 ∞ f n ( t ) cos ⁡ n π l x \sin wt=f_0+\sum_{n=1}^\infty f_n(t)\cos\frac{n\pi}{l}x sinwt=f0+n=1fn(t)coslx
        1. f 0 ( t ) = 1 l ∫ 0 l sin ⁡ w t d x = sin ⁡ w t f_0(t)=\frac{1}{l}\int_0^l\sin wtdx=\sin wt f0(t)=l10lsinwtdx=sinwt
        2. f n ( t ) = 2 l ∫ 0 l sin ⁡ w t cos ⁡ n π l x d x = 0 f_n(t)=\frac{2}{l}\int_0^l\sin wt\cos\frac{n\pi}{l}xdx=0 fn(t)=l20lsinwtcoslxdx=0
    3. 代入非齐次方程得
      1. 在这里插入图片描述
      2. 得常微分方程问题 { u n ′ ( t ) + ( n π a l ) 2 u n ( t ) = f n ( t ) u n ( 0 ) = 0 \left\{
        un(t)+(nπal)2un(t)=fn(t)un(0)=0" role="presentation" style="position: relative;">un(t)+(nπal)2un(t)=fn(t)un(0)=0
        \right.
        {un(t)+(lnπa)2un(t)=fn(t)un(0)=0
        1. n = 0 n=0 n=0 { u 0 ′ ( t ) = sin ⁡ w t u 0 ( 0 ) = 0 \left\{
          u0(t)=sinwtu0(0)=0" role="presentation" style="position: relative;">u0(t)=sinwtu0(0)=0
          \right.
          {u0(t)=sinwtu0(0)=0
          1. u 0 ( t ) = − 1 w cos ⁡ w t + C u 0 ( 0 ) = 0 } ⇒ u 0 ( t ) = 1 w ( 1 − cos ⁡ w t ) \left.
            u0(t)=1wcoswt+Cu0(0)=0" role="presentation" style="position: relative;">u0(t)=1wcoswt+Cu0(0)=0
            \right\} \Rightarrow u_{0}(t)=\frac{1}{w}(1-\cos w t)
            u0(t)=w1coswt+Cu0(0)=0}u0(t)=w1(1coswt)
        2. n ≠ 0 n\neq 0 n=0 { u n ′ ( t ) + ( n π a l ) 2 u n ( t ) = 0 u n ( 0 ) = 0 \left\{
          un(t)+(nπal)2un(t)=0un(0)=0" role="presentation" style="position: relative;">un(t)+(nπal)2un(t)=0un(0)=0
          \right.
          {un(t)+(lnπa)2un(t)=0un(0)=0
          1. u n ( t ) = C e − a 2 n 2 π 2 l 2 t u n ( 0 ) = 0 } ⇒ u n ( t ) ≡ 0 \left.
            un(t)=Cea2n2π2l2tun(0)=0" role="presentation" style="position: relative;">un(t)=Cea2n2π2l2tun(0)=0
            \right\} \Rightarrow u_{n}(t) \equiv 0
            un(t)=Cea2l2n2π2tun(0)=0}un(t)0
      3. u ( x , t ) = ∑ n = 0 ∞ u n ( t ) cos ⁡ n π l x u(x,t)=\sum_{n=0}^\infty u_n(t)\cos\frac{n\pi}{l}x u(x,t)=n=0un(t)coslx

    2.5非齐次边界条件处理

    2.4波方程 u ( x , t ) = v ( x , t ) + w ( x , t ) u(x,t)=v(x,t)+w(x,t) u(x,t)=v(x,t)+w(x,t)

    1. v在边界满足 v ( o , t ) = 0 , v ( l , t ) = 0 v(o,t)=0,v(l,t)=0 v(o,t)=0,v(l,t)=0则w在边界满足 w ( 0 , t ) = u 1 ( t ) , w ( l , t ) = u 2 ( t ) w(0,t)=u_1(t),w(l,t)=u_2(t) w(0,t)=u1(t),w(l,t)=u2(t)
    2. w形式 w ( x , t ) = A ( t ) x + B ( t ) w(x,t)=A(t)x+B(t) w(x,t)=A(t)x+B(t)
      1. 满足 { w ( x , t ) = A ( t ) x + B ( t ) w ( 0 , t ) = u 1 ( t ) , w ( l , t ) = u 2 ( t ) \left\{
        w(x,t)=A(t)x+B(t)w(0,t)=u1(t),w(l,t)=u2(t)" role="presentation" style="position: relative;">w(x,t)=A(t)x+B(t)w(0,t)=u1(t),w(l,t)=u2(t)
        \right.
        {w(x,t)=A(t)x+B(t)w(0,t)=u1(t),w(l,t)=u2(t)
      2. 解得 { A ( t ) = u 2 ( t ) − u 1 ( t ) l B ( t ) = u 1 ( t ) \left\{
        A(t)=u2(t)u1(t)lB(t)=u1(t)" role="presentation" style="position: relative;">A(t)=u2(t)u1(t)lB(t)=u1(t)
        \right.
        {A(t)=lu2(t)u1(t)B(t)=u1(t)
      3. ∴ w ( x , t ) = u 2 ( t ) − u 1 ( t ) l x + u 1 ( t ) \therefore w(x,t)=\frac{u_2(t)-u_1(t)}{l}x+u_1(t) w(x,t)=lu2(t)u1(t)x+u1(t)
    3. v在这里插入图片描述
      1. v ( x , t ) v(x,t) v(x,t)满足 { ∂ 2 v ∂ t 2 = a 2 ∂ 2 v ∂ x 2 + f 1 ( x , t ) v ∣ x = 0 = 0 , v ∣ x = l = 0 v ∣ t = 0 = ϕ 1 ( x ) , ∂ v ∂ t ∣ t = 0 = ψ 1 ( x ) \left\{
        2vt2=a22vx2+f1(x,t)v|x=0=0,v|x=l=0v|t=0=ϕ1(x),vt|t=0=ψ1(x)" role="presentation" style="position: relative;">2vt2=a22vx2+f1(x,t)v|x=0=0,v|x=l=0v|t=0=ϕ1(x),vt|t=0=ψ1(x)
        \right.
        t22v=a2x22v+f1(x,t)vx=0=0,vx=l=0vt=0=ϕ1(x),tv t=0=ψ1(x)
        其中 f 1 ( x , t ) = f ( x , t ) − u 2 ′ ′ ( t ) − u 1 ′ ′ ( t ) l x − u 1 ′ ′ ( t ) ϕ 1 ( x ) = ϕ ( x ) − u 1 ( 0 ) − u 2 ( 0 ) − u 1 ( 0 ) l x ψ 1 ( x ) = ψ ( x ) − u 1 ′ ( 0 ) − u 2 ′ ( 0 ) − u 1 ′ ( 0 ) l x
        f1(x,t)=f(x,t)u2(t)u1(t)lxu1(t)ϕ1(x)=ϕ(x)u1(0)u2(0)u1(0)lxψ1(x)=ψ(x)u1(0)u2(0)u1(0)lx" role="presentation" style="position: relative;">f1(x,t)=f(x,t)u2(t)u1(t)lxu1(t)ϕ1(x)=ϕ(x)u1(0)u2(0)u1(0)lxψ1(x)=ψ(x)u1(0)u2(0)u1(0)lx
        f1(x,t)=f(x,t)lu2′′(t)u1′′(t)xu1′′(t)ϕ1(x)=ϕ(x)u1(0)lu2(0)u1(0)xψ1(x)=ψ(x)u1(0)lu2(0)u1(0)x

    在这里插入图片描述

  • 相关阅读:
    写给新生们-常用软件及一些学习上的建议
    redis set zset key 常用命令
    海外服务器AS4837和AS4134S线路含义?怎么测试?
    AcrelEMS高速公路微电网能效管理平台与智能照明解决方案智慧点亮隧道
    【Redis】List 列表内部编码方式
    猴子也能学会的jQuery第十二期——jQuery遍历(中)
    5.django-模型ORM
    SCROLLINFO scrollInfo; 2023/10/5 下午3:38:53
    基于springboot+vue的超市进销存系统 elementui
    我常用的大模型和Prompt有哪些?
  • 原文地址:https://blog.csdn.net/weixin_46143152/article/details/126457253