a 2 y ′ ′ ( x ) + a 1 y ′ ( x ) + a 0 y ( x ) = 0 a_2y''(x)+a_1y'(x)+a_0y(x)=0 a2y′′(x)+a1y′(x)+a0y(x)=0
特征方程: a 2 r 2 + a 1 r + a 0 = 0 a_2r^2+a_1r+a_0=0 a2r2+a1r+a0=0, r特征根
2实根 r 1 ≠ r 2 r_1\neq r_2 r1=r2: 通解 y ( x ) = A e r 1 x + B e r 2 x y(x)=Ae^{r_1x}+Be^{r_2x} y(x)=Aer1x+Ber2x
1实根 r 1 = r 2 r_1=r_2 r1=r2: 通解 y ( x ) = ( A x + B ) e r x y(x)=(Ax+B)e^{rx} y(x)=(Ax+B)erx
复根
r
1
=
α
+
β
i
,
r
2
=
α
−
β
i
r_1=\alpha+\beta i, r_2=\alpha-\beta i
r1=α+βi,r2=α−βi: 通解
y
(
x
)
=
e
α
x
(
A
cos
β
x
+
B
sin
β
x
)
y(x)=e^{\alpha x}(A\cos\beta x+B\sin\beta x)
y(x)=eαx(Acosβx+Bsinβx)

ρ 2 R ′ ′ ( ρ ) + ρ R ′ ( ρ ) − λ R ( ρ ) = 0 \rho^2R''(\rho)+\rho R'(\rho)-\lambda R(\rho)=0 ρ2R′′(ρ)+ρR′(ρ)−λR(ρ)=0
常微分方程 X ′ ′ ( x ) + λ X ( x ) = 0 X''(x)+\lambda X(x)=0 X′′(x)+λX(x)=0
含待确定常数 λ \lambda λ的特征值问题, λ \lambda λ特征值, X ( x ) X(x) X(x)特征函数
{
X
′
′
(
x
)
+
λ
X
(
x
)
=
0
X
(
0
)
=
0
,
X
(
l
)
=
0
\left\{
y=dsolve('D2y+y=1-x^2/pi','x')
y=dsolve('D2y+y=1-x^2/pi','y(0)=0.2,Dy(0)=0.5','x')
ezplot(y),aixs([-3 3 -0.5 2])
[u,v]=dsolve('Du=3*u-2*v','Dv+v=2*u')
[u,v]=dsolve('Du=3*u-2*v','Dv+v=2*u','u(0)=1,v(0)=0','t')
{
∂
2
u
∂
t
2
=
a
2
∂
2
u
∂
x
2
0
<
x
<
l
,
t
>
0
u
∣
x
=
0
=
u
∣
x
=
l
=
0
u
∣
t
=
0
=
ϕ
(
x
)
,
∂
u
∂
t
∣
t
=
0
=
ψ
(
x
)
\left\{



波方程
{
∂
2
u
∂
t
2
=
a
2
∂
2
u
∂
x
2
+
f
(
x
,
t
)
,
0
<
x
<
l
,
t
>
0
u
∣
x
=
0
=
u
∣
x
=
l
=
0
u
∣
t
=
0
=
ϕ
(
x
)
,
∂
u
∂
t
∣
t
=
0
=
Ψ
(
x
)
\left\{
拆解
u
(
x
,
t
)
=
v
(
x
,
t
)
+
w
(
x
,
t
)
u(x,t)=v(x,t)+w(x,t)
u(x,t)=v(x,t)+w(x,t)
{
∂
2
v
∂
t
2
=
a
2
∂
2
v
∂
x
2
+
f
(
x
,
t
)
v
∣
x
=
0
=
v
∣
x
=
l
=
0
v
∣
t
=
0
=
0
,
∂
v
∂
t
∣
t
=
0
=
0
\left\{

syms V n a L
S=dsolve(`D2V+(n*pi*a/L)^2*V=5`,`V(0)=0,DV(0)=0`,`t`)
pretty(simple(S))
{
∂
u
∂
t
=
a
2
∂
2
u
∂
x
2
+
sin
ω
t
0
<
x
<
l
,
t
>
0
∂
u
∂
x
∣
x
=
0
=
∂
u
∂
x
∣
x
=
l
=
0
u
∣
t
=
0
=
0
\left\{

2.4波方程 u ( x , t ) = v ( x , t ) + w ( x , t ) u(x,t)=v(x,t)+w(x,t) u(x,t)=v(x,t)+w(x,t)
