
![[图片]](https://1000bd.com/contentImg/2024/03/29/f2699ad28fa6743a.png)
Logistic Function是最典型的sigmoid函数,因此有些书会直接说成sigmoid函数。
实际上满足如下条件即可称为sigmoid函数:
![[图片]](https://1000bd.com/contentImg/2024/03/29/a45548a5daeab718.png)
使用二分类交叉熵公式:
![[图片]](https://1000bd.com/contentImg/2024/03/29/74d2c6415c494eaa.png)
![[图片]](https://1000bd.com/contentImg/2024/03/29/a28b81ae42178c90.png)
![[图片]](https://1000bd.com/contentImg/2024/03/29/35baef7c1b74427b.png)
可以看到init部分没有区别,因为逻辑回归没有参数增加。
![[图片]](https://1000bd.com/contentImg/2024/03/29/f146fb214b839715.png)
![[图片]](https://1000bd.com/contentImg/2024/03/29/b481a8b1cfe8362a.png)
import torch
import matplotlib.pyplot as plt
#1.准备数据集
x_data = torch.Tensor([[1.0],[2.0],[3.0]])
y_data = torch.Tensor([[2.0],[4.0],[6.0]])
#2.使用Class设计模型
class LogisticRegressionModel(torch.nn.Module):
def __init__(self):
super(LinearModel,self).__init__()
self.linear = torch.nn.Linear(1,1)
def forward(self,x):
y_pred = F.sigmoid(self.linear(x))
return y_pred
model = LogisticRegressionModel() #创建类LinearModel的实例
#3.构建损失函数和优化器的选择
criterion = torch.nn.BCELoss(size_average=False)
optimizer = torch.optim.SGD(model.parameters(),lr=0.01)
#4.进行训练迭代
epoch_list =[]
loss_list=[]
for epoch in range(1000):
y_pred = model(x_data)
loss = criterion(y_pred,y_data)
print(epoch,loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
epoch_list.append(epoch+1)
loss_list.append(loss.item())
# 画图
plt.plot(epoch_list,loss_list)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.show()
![[图片]](https://1000bd.com/contentImg/2024/03/29/3f4597bf29faee83.png)
![[图片]](https://1000bd.com/contentImg/2024/03/29/927b7428bbc6e5b9.png)
import numpy as np
import matplotlib.pyplot as plt
x=np.linspace(0,10,200)
x_t=torch.Tensor(x).view((200,1))
# 使用训练好的模型
y_t=model(x_t)
y=y_t.data.numpy()
plt.plot(x,y)
plt.plot([0,10],[0.5,0.5],c='r')
plt.xlabel('Hours')
plt.ylabel('Probability of Pass')
plt.grid()
plt.show()

教程指路:【《PyTorch深度学习实践》完结合集】 https://www.bilibili.com/video/BV1Y7411d7Ys?share_source=copy_web&vd_source=3d4224b4fa4af57813fe954f52f8fbe7