Flink发布监控全流程

能够监控进程内部的信息

规范化的数据模型
所有采集的监控数据均以指标(metric)的形式保存在内置的时间序列数据库当中(TSDB)。所有的样本除了基本的指标名称以外,还包含一组用于描述该样本特征的标签。如下所示:
- http_request_status{code='200',content_path='/api/path',environment='produment'} => [value1@timestamp1,value2@timestamp2...]
-
- http_request_status{code='200',content_path='/api/path2',environment='produment'} => [value1@timestamp1,value2@timestamp2...]
每一条时间序列由指标名称(Metrics Name)以及一组标签(Labels)唯一标识。每条时间序列按照时间的先后顺序存储一系列的样本值。
Prometheus内置了一个强大的数据查询语言PromQL。 通过PromQL可以实现对监控数据的查询、聚合。同时PromQL也被应用于数据可视化(如Grafana)以及告警当中。
通过PromQL可以轻松回答类似于以下问题:

Prometheus - Monitoring system & time series database
下载地址
链接:https://pan.baidu.com/s/1pvbFCCLv6XekPk8h6o1nkA
提取码:yyds
--来自百度网盘超级会员V4的分享

解压

| master | node1 | node2 |
| prometheus pushgateway node exporter | node exporter | node exporter |
修改prometheus.yml
- scrape_configs:
-
- - job_name: 'prometheus'
- static_configs:
- - targets: ['master:9090']
-
- # 添加 PushGateway 监控配置
- - job_name: 'pushgateway'
- static_configs:
- - targets: ['master:9091']
- labels:
- instance: pushgateway
-
- # 添加 Node Exporter 监控配置
- - job_name: 'node exporter'
- static_configs:
- - targets: ['master:9100', 'node1:9100', 'node2:9100']
参数说明
- job_name:监控作业的名称
- static_configs:表示静态目标配置,就是固定从某个target拉取数据
- targets:指定监控的目标,其实就是从哪儿拉取数据。Prometheus会从http://hadoop202:9090/metrics上拉取数据。
Prometheus是可以在运行时自动加载配置的。启动时需要添加:--web.enable-lifecycle
修改配置如图

分发node_exporter
./xsync /home/bigdata/prome/node_exporter-1.2.2.linux-amd64/
启动prometheus
nohup ./prometheus --config.file=prometheus.yml > ./prometheus.log 2>&1 &
启动pushgateway
nohup ./pushgateway --web.listen-address=":9091" > ./pushgateway.log 2>&1 &
启动node_exporter(三台机器都启动)
./node_exporter &
访问 prometheus的9090端口

点击对应的界面进行查看

node_arp_entries[5m]
m表示分钟
node_arp_entries{device='ens33',instance='node1:9100'}
使用正则表达式
node_arp_entries{device=~'^ens33'}
使用条件
node_arp_entries{device=~'^ens33'}[1m] offset 10m
对于历史数据累加
sum(node_arp_entries{device=~'^ens33'} offset 10m) by(device)

添加依赖
- <dependency>
- <groupId>org.apache.flinkgroupId>
- <artifactId>flink-metrics-prometheus_2.12artifactId>
- <version>1.13.5version>
- <scope>providedscope>
- dependency>
打包插件
- <build>
- <plugins>
- <plugin>
- <groupId>org.apache.maven.pluginsgroupId>
- <artifactId>maven-assembly-pluginartifactId>
- <version>3.0.0version>
- <configuration>
- <descriptorRefs>
- <descriptorRef>jar-with-dependenciesdescriptorRef>
- descriptorRefs>
- configuration>
- <executions>
- <execution>
- <id>make-assemblyid>
- <phase>packagephase>
- <goals>
- <goal>singlegoal>
- goals>
- execution>
- executions>
- plugin>
-
- plugins>
- build>
在resource下面添加配置文件

log4j.properties
- monitorInterval=30
-
- # This affects logging for both user code and Flink
- rootLogger.level = error
- rootLogger.appenderRef.file.ref = MainAppender
-
- # Uncomment this if you want to _only_ change Flink's logging
- #logger.flink.name = org.apache.flink
- #logger.flink.level = INFO
-
- # The following lines keep the log level of common libraries/connectors on
- # log level INFO. The root logger does not override this. You have to manually
- # change the log levels here.
- logger.akka.name = akka
- logger.akka.level = INFO
- logger.kafka.name= org.apache.kafka
- logger.kafka.level = INFO
- logger.hadoop.name = org.apache.hadoop
- logger.hadoop.level = INFO
- logger.zookeeper.name = org.apache.zookeeper
- logger.zookeeper.level = INFO
- logger.shaded_zookeeper.name = org.apache.flink.shaded.zookeeper3
- logger.shaded_zookeeper.level = INFO
-
- # Log all infos in the given file
- appender.main.name = MainAppender
- appender.main.type = RollingFile
- appender.main.append = true
- appender.main.fileName = ${sys:log.file}
- appender.main.filePattern = ${sys:log.file}.%i
- appender.main.layout.type = PatternLayout
- appender.main.layout.pattern = %d{yyyy-MM-dd HH:mm:ss,SSS} %-5p %-60c %x - %m%n
- appender.main.policies.type = Policies
- appender.main.policies.size.type = SizeBasedTriggeringPolicy
- appender.main.policies.size.size = 100MB
- appender.main.policies.startup.type = OnStartupTriggeringPolicy
- appender.main.strategy.type = DefaultRolloverStrategy
-
- appender.main.strategy.max = ${env:MAX_LOG_FILE_NUMBER:-10}
-
- # Suppress the irrelevant (wrong) warnings from the Netty channel handler
- logger.netty.name = org.apache.flink.shaded.akka.org.jboss.netty.channel.DefaultChannelPipeline
- logger.netty.level = OFF
flink-conf.yaml
- ##### 与Prometheus集成配置 #####
- metrics.reporter.promgateway.class: org.apache.flink.metrics.prometheus.PrometheusPushGatewayReporter
- # PushGateway的主机名与端口号
- metrics.reporter.promgateway.host: master
- metrics.reporter.promgateway.port: 9091
- ## Flink metric在前端展示的标签(前缀)与随机后缀
- metrics.reporter.promgateway.jobName: flink-metrics-ppg
- #如果jobName启动二次,那么第二次的时候会有一个随机的名字
- metrics.reporter.promgateway.randomJobNameSuffix: true
- metrics.reporter.promgateway.deleteOnShutdown: false
- #这里表示多久推一次数据
- metrics.reporter.promgateway.interval: 15 SECONDS
启动程序的时候修改配置(由于加了

传入参数

对应的应用程序(本地测试)
- public class Demo01App {
-
- public static void main(String[] args) throws Exception {
-
- //0 调试取本地配置 ,打包部署前要去掉
- // Configuration configuration=new Configuration(); //此行打包部署专用
- // String resPath = Thread.currentThread().getContextClassLoader().getResource("flink-conf.yaml").getPath(); //本地调试专用
- Configuration configuration = GlobalConfiguration.loadConfiguration("C:\\Users\\zhang\\Desktop"); //本地调试专用
-
- //1. 读取初始化环境
- configuration.setString("metrics.reporter.promgateway.jobName","demo01App");
- StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(configuration);
- // 2. 指定nc的host和port
- ParameterTool parameterTool = ParameterTool.fromArgs(args);
- String hostname = parameterTool.get("host");
- int port = parameterTool.getInt("port");
-
- // 3. 接受socket数据源
- DataStreamSource
dataStreamSource = env.socketTextStream(hostname, port); -
- dataStreamSource.print();
-
- //appname
- env.execute("demo01App");
-
- }
- }
测试程序

查看控制台然后可以看到采集过来的数据

先启动yarn
修改linux里面flink的配置

提交运行
./flink run -m node1:34982 -c com.atguigu.prome.app.Demo01App -p 2 ./flink-prome2022-1.1-SNAPSHOT.jar
解压
tar -zxvf grafana-enterprise-8.1.2.linux-amd64.tar.gz
启动
nohup ./bin/grafana-server web > ./grafana.log 2>&1 &
访问

先添加数据源

如果和前一分钟比,它们的时间不在变化那么这个时候说明Flink挂掉了
flink_jobmanager_job_uptime-flink_jobmanager_job_uptime offset 1m
导入数据


得到的效果为



原因:是pushgateway不会主动的清理数据,监控面板的判断有误,如果我们改成现在和过去一分钟的数据进行减法如果等于零,也就是没有数据更新的时候改成complete
原始值

absent(flink_jobmanager_job_uptime{job_name="$JobName", job=~"$JobManager", job_id=~"$JobId", instance_id="$InstanceId"} > 0)
修改后的值为
absent(flink_jobmanager_job_uptime{job_name="$JobName", job=~"$JobManager", job_id=~"$JobId", instance_id="$InstanceId"} - flink_jobmanager_job_uptime{job_name="$JobName", job=~"$JobManager", job_id=~"$JobId", instance_id="$InstanceId"} offset 1m > 0)
当程序停止以后可以看到

因为只有图表才能发送报警

配置查询参数
flink_jobmanager_job_uptime - flink_jobmanager_job_uptime offset 1m
效果图

- public class Demo01App {
-
- public static void main(String[] args) throws Exception {
-
- //0 调试取本地配置 ,打包部署前要去掉
- // Configuration configuration=new Configuration(); //此行打包部署专用
- String resPath = Thread.currentThread().getContextClassLoader().getResource("flink-conf.yaml").getPath(); //本地调试专用
- Configuration configuration = GlobalConfiguration.loadConfiguration("C:\\Users\\zhang\\Desktop"); //本地调试专用
-
- //1. 读取初始化环境
- configuration.setString("metrics.r+eporter.promgateway.jobName","demo01App");
- StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(configuration);
- // 2. 指定nc的host和port
- ParameterTool parameterTool = ParameterTool.fromArgs(args);
- String hostname = parameterTool.get("host");
- int port = parameterTool.getInt("port");
-
- // 3. 接受socket数据源
- DataStreamSource
dataStreamSource = env.socketTextStream(hostname, port); -
- dataStreamSource.keyBy(new KeySelector
() { - @Override
- public String getKey(String s) throws Exception {
- return s;
- }
- }).process(new ProcessFunction
() { - Counter counter=null;
-
- @Override
- public void open(Configuration parameters) throws Exception {
- //TODO 申明埋点
- counter = getRuntimeContext().getMetricGroup().addGroup("mycount").counter("mycountTest");
- }
-
- @Override
- public void processElement(String s, ProcessFunction
.Context context, Collector collector) throws Exception { - // TODO 对于埋点的数据进行累加
- counter.inc();
- collector.collect(s);
- }
- }).print();
-
- //appname
- env.execute("demo01App");
-
- }
- }
http://master:9091/metrics

上图可以看到自定义的指标收集到了
窗口最大值,求缓存命中率

思想就是10分钟一个窗口,求出窗口的最大值,和上一个窗口进行减法然后就是10分钟的增量
自定义得到的数据

添加图表,把查询Prometheus的查询得到的数据到grafana进行展示

保存以后得到图标

由于pushGetWay在任务挂掉一会不会自动清理掉数据,它是由最新的数据覆盖久数据的形式,如果任务挂了以后,那么就没有新的数据进行覆盖了,这个时候就会有数据的残留,我们得进行处理
pushGetWay不会自动的删除过期的数据,Promethus默认保存15天的数据,自己会对每一次拉去过来的数据加上一个时间戳