前言 :详细介绍了yolo系列目标检测算法的原理和发展过程。
系列:
【YOLO系列】YOLO.v1算法原理详解
【YOLO系列】YOLO.v2算法原理详解
【YOLO系列】YOLO.v3算法原理详解
【YOLO系列】YOLO.v4算法原理详解
【YOLO系列】YOLO.v5算法原理详解
论文参考:You only look once unified real-time object detection
yolov1 是使用 one-stage 方法进行目标检测。核心思想是把目标检测问题处理成回归问题。
输入图像通过一个卷积神经网络,直接输出最终预测框位置和类别(概率)。
整个YOLO检测系统如下图所示。

假设网络实现的预测类别数为 C 个
论文中使用 PASCAL VOC数据集,C=20,即实现20类别物品的目标检测;
输入图像首先被 resize 到指定尺寸
论文中将输入图像统一调整到 448 × \times × 448 ;
即网络输入: 448 × 448 × 3 448\times 448 \times 3 448×448×3 ;
对图像进行划分,共划分 S × S S\times S S×S 个方格(即grid),
论文中 S=7, 即共划分 7 × 7 = 49 7\times 7=49 7×7=49个方格 ;
每个方格包含 64 × 64 64\times 64 64×64 个像素点 ;
针对每个方格grid,
生成 C 个类别目标的概率分数(表示该方格是否存在该目标的概率),用 p 表示。
生成 B 个检测框(即bbox, 用于检测目标),每个检测框共 5 个参数 ( x , y , w , h , c ) (x,y,w,h,c) (x,y,w,h,c) 。
使用 ( x , y ) (x, y) (x,y) 表示检测框中心相对于方格左上角的偏移量;
使用 ( w , h ) (w, h) (w,h) 表示检测框的宽和高;该值是相对于图像宽高的比。
使用 c o n f i d e n c e confidence confidence 表示该框预测(目标)的置信度;该值综合了含目标的置信度和方框位置准确度。
每个方格输出向量如下图所示:

因此针对每个方格,共有参数量为 ( C + B × 5 ) (C+B\times 5) (C+B×5) 个。本论文中,即 ( 20 + 2 × 5 ) = 30 (20+2\times 5) = 30 (20+2×5)=30 个。
针对一张图片,最终输出向量: S × S × ( C + B × 5 ) S\times S \times (C+B\times 5) S×S×(C+B×5)
本论文中即 7 × 7 × 30 = 1470 7\times 7 \times 30 = 1470 7×7×30=1470
对输出向量进行后处理,得到最终预测结果
根据输出向量提取出的预测框和类别信息,通过非极大值抑制(Non-Maximum Compression, NMS) ,去除重复框,即可得到最终检测结果。
NMS算法原理及实现可参看: 目标检测之相关指标介绍
论文所用卷积神经网络结构,即Backbone基于GoogLeNet,具体如下图所示:

该网络最后一层的输出 7 × 7 × 30 7\times 7 \times 30 7×7×30 即对应上述最终输出向量的分析。
预测框bbox如下所示

( x , y ) (x,y) (x,y) 表示预测框bbox中心相对于当前所在方格的偏移值,范围在 [0,1];
( w , h ) (w,h) (w,h) 表示预测框bbox宽高,该值实际计算为框的实际宽高与整图宽高的比值,范围为 [0,1];
c
c
c 即 confidence,表示预测框置信度,范围为[0,1]。
计算方法如下
c
=
P
r
(
O
b
j
e
c
t
)
∗
I
O
U
p
r
e
d
t
r
u
t
h
c = Pr(Object)*IOU_{pred}^{truth}
c=Pr(Object)∗IOUpredtruth
其中,
P
r
(
O
b
j
e
c
t
)
Pr(Object)
Pr(Object)表示当前格子包含目标的概率,只有0和1两个数值。如果该目标中心落入该格子,则
P
r
(
o
b
j
e
c
t
)
=
1
Pr(object)=1
Pr(object)=1,反正,该值为0。
值得说明的是,在1.2节中提到每个格子共有B(论文中该值为为2)个预测框,也即每个格子共B组(x,y,w,h,c)数据。每个格子只负责预测一类物体,也即两个检测框只预测一类物体。预测物体的类别即是根据置信度大小来确定的。
损失即计算网络输出值(或预测值)与标签值差异的程度。
举例说明,如上图的包含狗狗的方格,对应的标签值与预测值形式如下,

yolo v1中损失函数共包含三项,即坐标预测损失、置信度预测损失和类别预测损失。
三个损失函数都使用了均方误差。计算公式如下所示:

其中,
S —— 方格数,论文中为 7;
B —— 每个方格中检测框数量,论文中为 2;
x i , y i x_i, y_i xi,yi —— 检测框中心坐标;
w i , h i w_i, h_i wi,hi —— 检测框宽和高;公式中使用开根号,为了增大小物体检测的该部分损失权重;
C i C_i Ci —— 检测框置信度
p i p_i pi —— 类别概率
1
i
,
j
o
b
j
1^{obj}_{i,j}
1i,jobj —— 标签中,检测框中心点是否落入当前方格,若落入,取值 1,反之,取值 0;
1
i
,
j
n
o
o
b
j
1^{noobj}_{i,j}
1i,jnoobj 与此相反。
λ c o o r d , λ n o o b j \lambda_{coord}, \lambda_{noobj} λcoord,λnoobj —— 对应损失项的权重,值越大,代表该部分损失越大。论文中分别设为了 5 和 0.5;
本文详细介绍了yolov1的原理和实现过程。
下一篇:YOLO.v2