轻量级的IPC通信机制
struct rt_completion
{
rt_uint32_t flag;
/* suspended list */
rt_list_t suspended_list;
};
flag可选参数:
#define RT_COMPLETED 1
#define RT_UNCOMPLETED 0
只支持静态对象初始化,不支持动态生成对象
void rt_completion_init(struct rt_completion *completion)
rt_err_t rt_completion_wait(struct rt_completion *completion,
rt_int32_t timeout)
//rt_err_t 执行正确时,返回 RT_EOK ,执行错误时,返回错误码
函数执行流程:

void rt_completion_done(struct rt_completion *completion)
1.4 示例代码
/*
* 程序清单:完成量例程
*
* 程序会初始化 2 个线程及初始化一个完成量对象
* 一个线程等待另一个线程发送完成量
*/
#include
#include
#define THREAD_PRIORITY 9
#define THREAD_TIMESLICE 5
/* 完成量控制块 */
static struct rt_completion completion;
ALIGN(RT_ALIGN_SIZE)
static char thread1_stack[1024];
static struct rt_thread thread1;
/* 线程 1 入口函数 */
static void thread1_completion_wait(void *param)
{
/* 等待完成 */
rt_kprintf("thread1: completion is waitting\n");
rt_completion_wait(&completion, RT_WAITING_FOREVER);
rt_kprintf("thread1: completion waitting done\n");
rt_kprintf("thread1 leave.\n");
}
ALIGN(RT_ALIGN_SIZE)
static char thread2_stack[1024];
static struct rt_thread thread2;
/* 线程 2 入口 */
static void thread2_completion_done(void *param)
{
rt_kprintf("thread2: completion done\n");
rt_completion_done(&completion);
rt_kprintf("thread2 leave.\n");
}
int completion_sample(void)
{
/* 初始化完成量对象 */
rt_completion_init(&completion);
rt_thread_init(&thread1,
"thread1",
thread1_completion_wait,
RT_NULL,
&thread1_stack[0],
sizeof(thread1_stack),
THREAD_PRIORITY - 1, THREAD_TIMESLICE);
rt_thread_startup(&thread1);
rt_thread_init(&thread2,
"thread2",
thread2_completion_done,
RT_NULL,
&thread2_stack[0],
sizeof(thread2_stack),
THREAD_PRIORITY, THREAD_TIMESLICE);
rt_thread_startup(&thread2);
return 0;
}
/* 导出到 msh 命令列表中 */
MSH_CMD_EXPORT(completion_sample, completion sample);
导入头文件
#include
struct rt_ringbuffer
{
rt_uint8_t *buffer_ptr;
rt_uint16_t read_mirror : 1;
rt_uint16_t read_index : 15;
rt_uint16_t write_mirror : 1;
rt_uint16_t write_index : 15;
rt_int16_t buffer_size;
};
- buffer_ptr 是指向缓冲区的指针,
- buffer_size 是缓冲区的大小,
- read_index 是读索引,
- write_index 是写索引,
- read_mirror 和 write_mirror 可以理解为一种镜像值,每次向缓冲区写入数据,碰到缓冲区末尾时,切换到另一个镜像的缓冲区头部写入剩余数据。这种镜像操作可用于判断缓冲区内数据是满还是空
struct rt_ringbuffer* rt_ringbuffer_create(rt_uint16_t length);
void rt_ringbuffer_destroy(struct rt_ringbuffer *rb);
void rt_ringbuffer_init(struct rt_ringbuffer *rb, rt_uint8_t *pool, rt_int16_t size);
void rt_ringbuffer_reset(struct rt_ringbuffer *rb);
rt_size_t rt_ringbuffer_putchar(struct rt_ringbuffer *rb, const rt_uint8_t ch);
执行的是数据的覆盖
rt_size_t rt_ringbuffer_putchar_force(struct rt_ringbuffer *rb, const rt_uint8_t ch);
rt_size_t rt_ringbuffer_put(struct rt_ringbuffer *rb, const rt_uint8_t *ptr, rt_uint16_t length);
rt_size_t rt_ringbuffer_getchar(struct rt_ringbuffer *rb, rt_uint8_t *ch);
rt_size_t rt_ringbuffer_get(struct rt_ringbuffer *rb, rt_uint8_t *ptr, rt_uint16_t length);
rt_size_t rt_ringbuffer_peak(struct rt_ringbuffer *rb, rt_uint8_t**ptr);
该接口建议只用来访问一个字节,否则极有可能造成数组越界
rt_inline rt_uint16_t rt_ringbuffer_get_size(struct rt_ringbuffer *rb);
消息队列结构介绍struct rt_workqueue
{
rt_list_t work_list;
rt_list_t delayed_list;
struct rt_work *work_current; /* current work */
struct rt_semaphore sem;
rt_thread_t work_thread;
};
工作项
struct rt_work
{
rt_list_t list;
void (*work_func)(struct rt_work *work, void *work_data);
void *work_data;
rt_uint16_t flags;
rt_uint16_t type;
struct rt_timer timer;
struct rt_workqueue *workqueue;
};
list 用于将该工作项挂载到工作链表上去,
work_func 就是该工作项绑定的函数指针
work_data 是用户自定义数据,当工作项被执行时就会调用该函数。
rt_inline void rt_work_init(struct rt_work *work, void (*work_func)(struct rt_work *work, void *work_data), void *work_data);
rt_err_t rt_work_submit(struct rt_work *work, rt_tick_t time);

rt_err_t rt_work_cancel(struct rt_work *work);

struct rt_workqueue *rt_workqueue_create(const char *name, rt_uint16_t stack_size, rt_uint8_t priority);
rt_err_t rt_workqueue_destroy(struct rt_workqueue *queue);
rt_err_t rt_workqueue_submit_work(struct rt_workqueue *queue, struct rt_work *work, rt_tick_t time);

rt_err_t rt_workqueue_dowork(struct rt_workqueue *queue, struct rt_work *work);
rt_err_t rt_workqueue_critical_work(struct rt_workqueue *queue, struct rt_work *work);
rt_err_t rt_workqueue_cancel_work(struct rt_workqueue *queue, struct rt_work *work);
等待任务执行结束才返回
rt_err_t rt_workqueue_cancel_work_sync(struct rt_workqueue *queue, struct rt_work *work);
#include
#include
struct rt_work work1;
int work1_data = 1;
struct rt_work work2;
int work2_data = 2;
void work_func(struct rt_work *work, void *work_data)
{
int data = *(int *)work_data;
rt_kprintf("recv work data: %d\n", data);
}
int workqueue_example(void)
{
printf("hello rt-thread!\n");
struct rt_workqueue *wq = rt_workqueue_create("my_wq", 2048, 20);
RT_ASSERT(wq);
rt_work_init(&work1, work_func, &work1_data);
rt_work_init(&work2, work_func, &work2_data);
rt_workqueue_submit_work(wq, &work1, 2);
rt_workqueue_submit_work(wq, &work2, 0);
return 0;
}
MSH_CMD_EXPORT(workqueue_example, workqueue example);